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Abstract

Achieving high spectral resolution is an important prerequisite for the application of solid-state NMR to biological molecules.

Higher spectral resolution allows to resolve a larger number of resonances and leads to higher sensitivity. Among other things,

heteronuclear spin decoupling is one of the important factors which determine the resolution of a spectrum. The process of het-

eronuclear spin decoupling under magic-angle sample spinning is analyzed in detail. Continuous-wave RF irradiation leads only in a

zeroth-order approximation to a full decoupling of heteronuclear spin systems in solids under magic-angle spinning (MAS). In a

higher-order approximation, a cross-term between the dipolar-coupling tensor and the chemical-shielding tensor is reintroduced,

providing a scaled coupling term between the heteronuclear spins. In strongly coupled spin systems this second-order recoupling

term is partially averaged out by the proton spin-diffusion process, which leads to exchange-type narrowing of the line by proton

spin flips. This process can be described by a spin-diffusion type superoperator, allowing the efficient simulation of strongly coupled

spin systems under heteronuclear spin decoupling. Low-power continuous-wave decoupling at fast MAS frequencies offers an al-

ternative to high-power irradiation by reversing the order of the averaging processes. At fast MAS frequencies low-power con-

tinuous-wave decoupling leads to significantly narrower lines than high-power continuous-wave decoupling while at the same time

reducing the power dissipated in the sample by several orders of magnitude. The best decoupling is achieved by multiple-pulse

sequences at high RF fields and under fast MAS. Two such sequences, two-pulse phase-modulated decoupling (TPPM) and

X-inverse-X decoupling (XiX), are discussed and their properties analyzed and compared.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

1.1. General motivation

High spectral resolution is an essential prerequisite

for the application of solid-state nuclear magnetic res-

onance (NMR) spectroscopy to larger biological sys-

tems. Unambiguous assignment of resonances is only
possible if the resonances can be distinguished in a

multi-dimensional correlation spectrum. Based on the

assignment, localized information about distances or

torsion angles can then be obtained which form the basis

for any structural constraints obtained from solid-state

NMR. Reducing the linewidth allows not only a larger

number of resonance to be resolved but, at the same

time, leads to a higher signal-to-noise ratio since the

integral of the line remains constant.

In NMR spectroscopy, one of the most important

tools for obtaining narrow lines and for simplifying the

spectrum is heteronuclear spin decoupling [1]. Origi-

nally, continuous-wave (cw) decoupling was used in li-

quid-state NMR, but it was soon realized that resonance

offsets could lead to incomplete decoupling and residual
line splittings [2,3]. To reduce this problem, noise de-

coupling [4] was introduced where a pseudo-random

phase inversion was applied to the radio-frequency (RF)

irradiation. Today, one usually decouples the isotropic

heteronuclear J-coupling in liquid-state NMR by ap-

plying a multiple-pulse sequence such as MLEV [5],

WALTZ [6,7], DIPSI [8], or GARP [9] or by using

adiabatic inversion pulses like WURST [10] or SWIRL
[11]. Since the J-coupling constants are often quite

small, e.g., less than 200 Hz in organic solids, one can
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use relatively low RF-field strengths to obtain broad-
band heteronuclear decoupling.

In solid-state NMR, the situation concerning het-

eronuclear spin decoupling is more complicated. We do

not only have to consider the isotropic heteronuclear

J-coupling but also the anisotropic heteronuclear dipo-

lar coupling, which is in many cases several orders of

magnitude larger than the J-coupling. Under magic-

angle sample spinning (MAS) the anisotropic hetero-
nuclear dipolar coupling becomes time-dependent and

leads to a sideband pattern as does the anisotropic

chemical-shielding tensor. If one now imposes an addi-

tional time dependence on the spin system due to RF

irradiation, one can get interference effects between the

two time-dependent processes if they are on the same

time scale. These interference effects can manifest

themselves as undesired recoupling of the dipolar in-
teraction [12–16] which can lead to a significant broad-

ening of the lines.

The situation becomes even more complicated in the

presence of strong homonuclear dipolar couplings. The

homonuclear dipolar-coupling Hamiltonian does not

commute with itself at different points in time under

MAS and also not with the heteronuclear dipolar-cou-

pling Hamiltonian. This property leads to an incomplete
averaging of the heteronuclear dipolar couplings by

MAS. The homonuclear dipolar-coupling Hamiltonian

can also lead to a spin-diffusion type magnetization-

transfer process among the irradiated spins, which can

also interfere with the decoupling process. The term spin

diffusion in the present context characterizes a general-

ized polarization-transfer process between the I-spins

which is propagated by flip-flop processes. The Hamil-
tonian for these flip-flop processes can either be the

normal static dipolar-coupling Hamiltonian or the first-

order dipolar-coupling average Hamiltonian under

MAS. These differences between the liquid-state and the

solid-state NMR Hamiltonians explain why efficient

heteronuclear spin decoupling in solids is more de-

manding and difficult to achieve than in liquid-state

NMR.
For several decades until about 1995, high-power cw

decoupling remained the most common way to achieve

heteronuclear spin decoupling in solid-state NMR under

MAS [17–19]. The introduction of two-pulse phase-

modulated decoupling (TPPM) by Bennett et al. [20]

initiated renewed interest in the understanding of the

decoupling process in rotating solids and started the

development of more advanced decoupling sequences.
If one could spin a solid powder sample containing

only spin-1/2 nuclei infinitely fast about the magic angle,

one would basically expect to recover the high-resolu-

tion spectrum obtained in liquid-state NMR. All an-

isotropic second-rank tensor interactions would be

averaged out, and the decoupling problem would then

be reduced to decoupling the isotropic J interaction. To

implement such an approach would, however, require
considerably higher MAS frequencies than are available

today (2002). Fig. 1 shows 13C spectra of a CH group

(Fig. 1a, selectively labeled [2-13C]alanine) and a CH2

group (Fig. 1b, selectively labeled [2-13C]glycine) at

MAS spinning frequencies between 10 and 50 kHz ob-

tained without proton irradiation. At 50 kHz spinning

frequency the linewidth of the CH group was found to

be about 250 Hz full width at half height (FWHH) while
the minimum linewidth reached in this sample using

high-power TPPM decoupling was about 35 Hz FWHH.

In the CH2 group the linewidth at 50 kHz MAS spinning

frequency was about 750 Hz while the minimum line-

width reached using TPPM decoupling was 50 Hz. Fig. 2

shows the measured linewidth (FWHH) plotted as a

function of the spinning frequency for the CH group

(circles) and for the CH2 group (squares). The solid lines
in Fig. 2 show the best two fits of the function

f ðmrÞ ¼ a=mr þ b to the measured data. The experimental

linewidths follow quite well a 1=mr dependence as one

would expect from theoretical considerations (see Sec-

tion 4.1).

From the spectra shown in Fig. 1 it can clearly be

seen that with current MAS technology spinning with-

out RF irradiation is not sufficient to obtain dipolar-
decoupled carbon spectra in a powder sample of a

typical organic solid. In order to average out the resid-

ual dipolar couplings and the heteronuclear J-couplings,

which are invariable under MAS, RF irradiation is

needed. Adding RF irradiation to MAS generates

complications due to possible interference effects be-

tween the physical rotation of the sample and the rota-

tion of the spins by the applied cw RF-field. The most
important interference effects in the context of decou-

pling are rotary-resonance recoupling at nxr ¼ x1 with

n ¼ 1; 2 [12–15] and the HORROR condition at
1
2
xr ¼ x1 [16]. The first leads to a recoupling of the

heteronuclear dipolar coupling while the latter leads to a

Fig. 1. 13C spectra of [2-13C]alanine (a) and [2-13C]glycine (b) at dif-

ferent MAS frequencies without proton irradiation (figure adapted

from [49]).
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recoupling of the homonuclear dipolar interaction. In

principle, there are also higher rotary-resonance condi-

tions with n > 2 but they are usually weak. To avoid

interference from these rotary-resonance conditions, it is

required that the decoupler field strength be significantly

larger than two times the spinning frequency (see Sec-
tion 4.3).

Due to the various interference effects between the

sample spinning and the spin rotations by RF irradia-

tion, it is difficult to imagine that efficient decoupling

can be achieved if the time dependencies of the two

processes are on the same scale. It seems, therefore,

sensible to use RF-irradiation fields that are either

considerably higher or considerably lower than the
MAS frequency. The much older and well-established

approach is high-power decoupling using either cw ir-

radiation or, more recently, multiple-pulse sequences.

Under this condition, the spin Hamiltonian is first

truncated by the RF irradiation and then on a longer

time scale averaged by the MAS rotation (Fig. 3a). In

recent years, however, the available MAS spinning fre-

quencies have increased quite substantially and have
made the second approach also viable. If the MAS fre-

quency is considerably larger than the RF-field ampli-

tude, the Hamiltonian is first averaged by the MAS

rotation and only this partially averaged Hamiltonian is

then averaged by the RF field (Fig. 3b).

1.2. High-power cw decoupling

For a long time, high-power cw irradiation was the

most common way to achieve heteronuclear spin de-

coupling in solid-state NMR under MAS [17–19]. The

spins are irradiated with a ‘‘strong’’ RF-field of typically

50–250 kHz for rigid organic solids and the decoupling

quality improves with increasing field strength. In this

context, improved decoupling quality means narrower

lines and higher line intensity. Fig. 4 shows, as a typical
example, the 13C spectrum of the dipeptide LL-Val–LL-Phe

at an MAS frequency of mr ¼ 28 kHz without proton

decoupling (Fig. 4a) and with high-power (m1 ¼ 150 kHz)

proton decoupling (Fig. 4b). It is immediately obvious

that the resolution of the spectrum is significantly im-

proved by irradiating the protons. Such an observation is

typical for a ‘‘normal’’ organic solid which has a strongly

coupled proton network.
Despite the widespread use of cw decoupling under

MAS in solid-state NMR, the source of the residual

linewidth and the decoupling process in general were not

well understood. There was quite a number of obser-

vations concerning the dependence of the linewidth on

various parameters but no general theory which could

explain all these observations. It was generally accepted

that for efficient decoupling the field strength must be
greater than the magnitude of both the heteronuclear

and the homonuclear dipolar interactions. In solids with

strongly coupled homonuclear spin systems the flip-flop

fluctuations of the homonuclear spins (spin diffusion)

lead to an additional modulation of the residual het-

eronuclear dipolar coupling which results in a narrowing

Fig. 3. Sequential averaging of the Hamiltonian by space and spin

rotations. In (a) the Hamiltonian is first averaged in spin space and

then in real space by MAS while in (b) the Hamiltonian is first aver-

aged by MAS and then in spin space. A prerequisite for such a

treatment is that the two averaging processes happen on different time

scales.

Fig. 2. Dependence of the full width at half height (FWHH) on the

spinning frequency for the spectra shown in Fig. 1. The solid line

shows the best fit of the function f ðmrÞ ¼ a=mr þ b to the measured

values. For the CH group a ¼ 10811Hz2, b ¼ 6:4 Hz, for the CH2

group a ¼ 33002Hz2, b ¼ 91:0 Hz (figure adapted from [49]).

Fig. 4. 13C spectrum of a uniformly labeled dipeptide (LL-Val–LL-Phe)

recorded without (a) and (b) with proton decoupling at an MAS fre-

quency of 28 kHz. The increased resolution in the proton-decoupled

spectrum is clearly visible.
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of the observed line [21] due to an exchange-type process
between the components of the multiplet [22] if the

proton spin-diffusion rate constant is of the right order

of magnitude. This line-narrowing process has also been

called ‘‘self-decoupling’’ due to the proton spin-diffusion

process [23–25]. It has been shown experimentally that

by applying the decoupling field off resonance such that

the effective field is inclined at an angle of 54.74� (magic

angle) to the static magnetic field, the homonuclear in-
teractions are quenched. The reduced or vanishing ho-

monuclear dipolar interactions lead to a broadening of

the decoupled heteronuclear line [18]. The residual

linewidth for cw decoupling in solids under MAS is

usually found to decrease with increasing RF-field

strength [26]. It has also been observed that the residual

linewidth increases with increasing MAS frequency if

the RF-field strength is kept constant [27]. Decoupling
sidebands can be observed at the RF-irradiation fre-

quency [28]. A detailed discussion of the various con-

tributions to the linewidth of solid-state NMR spectra

under high-power cw decoupling and MAS is found in

the literature [29].

However, the models presented so far cannot explain

the two experimental 15N spectra of [d9]-trimethyl-am-

monium chloride shown in Fig. 5. Without proton de-
coupling (Fig. 5a) the spectrum shows two sharp lines

(FWHH D1=2 � 50 Hz) with a splitting due to the

J-coupling (1JNH � 100 Hz). This spectrum was mea-

sured at a spinning frequency of 30 kHz and at a proton

resonance frequency of 600 MHz. Under cw decoupling

with a field strength of m1 ¼ 100 kHz (Fig. 5b) the line

broadens significantly and one finds two broad reso-

nances with a splitting of about 850 Hz. This unex-
pected experimental observation of a line broadening

instead a line narrowing under cw decoupling made it

clear that a new model was needed to understand the

mechanism of heteronuclear spin decoupling under

MAS in solids.

The different behavior of the two samples (Figs. 4 and

5) under high-power cw decoupling can be understood

within a model of decoupling which explicitly includes
the chemical-shielding tensor of the protons and the

proton spin-diffusion process [21,30]. This model is

based on the coherent description of a two-spin system

which is coupled to the proton bath by an isotropic re-

laxation-type superoperator. The system Hamiltonian of

the two-spin system is first averaged by the RF-field and

then in a second step by the MAS rotation (Fig. 3a).

Such an approach is justified if the MAS rotation is
considerably (at least a factor of three) slower than the

RF-nutation frequency (the ‘‘RF-field strength’’). The

truncation of the two-spin Hamiltonian by the RF field

leads to a second-order cross-term between the chemi-

cal-shielding tensor of the protons and the heteronuclear

dipolar coupling [30]. This term, mentioned in passing in

[20], is in many cases the dominant contribution to the

residual linewidth of an isolated two-spin system under
cw decoupling. This conclusion was later confirmed in

a paper by Zax [31], where the possible mechanisms

for the residual line broadening in cw decoupling were

discussed.

Such a second-order cross-term cannot be averaged

out by the MAS rotation since the coupling of the two

tensors leads to a sum of a zeroth-rank, a second-rank,

and a fourth-rank tensor. Only the second-rank tensor
contribution is averaged out by the MAS rotation.

However, by using different spatial averaging techniques

such as dynamic-angle spinning (DAS) or double rota-

tion (DOR) [32–34] it would be possible to average out

both the second-rank and the fourth-rank parts of the

cross-term simultaneously, leaving only the isotropic

(zeroth-rank tensor) part unchanged.

Second-order effects in the laboratory frame due to
the truncation of the Hamiltonian by the Zeeman field

are well known in solid-state NMR [17,18,35]. The

best-known example is the second-order quadrupolar

shift [36] but other examples such as a shift originating

from the dipolar coupling have been described and

observed experimentally [37,38]. There is also an iso-

tropic second-order dipolar shift in the rotating frame

[39] which can be substantially larger than the second-
order dipolar shifts in the laboratory frame [37,38]

because the interaction is scaled by the RF field and

not by the Zeeman field. The second-order dipolar shift

in the rotating frame is very closely related to the

second-order cross-term of the dipolar coupling and

the chemical-shielding tensors. However, since the

Hamiltonian describing the second-order dipolar shift

commutes with the S-spin subspace of the Hamilto-
nian, it has no direct influence on the spectrum of the

observed spin.

1.3. High-power multiple-pulse decoupling

The two-pulse phase-modulated (TPPM) decoupling

sequence [20] was the first multiple-pulse decoupling

Fig. 5. 15N spectrum of [d9]-trimethyl-ammonium chloride (a) without

and (b) with decoupling. In this sample we see a significant broadening

of the resonances as a result of proton decoupling.
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method for solid organic samples under MAS that gave
significant improvements in both linewidth and line in-

tensity under a wide range of experimental conditions.

TPPM decoupling consists of two pulses each with a flip

angle of about 180� and a phase difference between the

two pulses, u, which is on the order of 10–50�. It was

shown that the significant reduction in the residual

linewidth comes from the fact that the second-order

cross-term between the chemical-shielding tensor of the
irradiated spins and the heteronuclear dipolar-coupling

tensor is reduced by TPPM decoupling [30,40,41]. Ex-

perimentally, it was found that the linewidth in TPPM

decoupling is very sensitive to the precise setting of the

two parameters, the pulse length and the phase angle

[21]. They have to be optimized empirically after any

change in experimental parameters and depend on the

RF-field strength, MAS frequency, sample, spectrome-
ter, and probe.

There are a number of variations and modifications

of the TPPM decoupling sequence. Frequency-modu-

lated and phase-modulated decoupling (FMPM) [42]

combines the phase modulation with a frequency

modulation leading to a circular modulation of the RF

irradiation. Only one of the two possible circular

modulations works as well as TPPM while the other
one does not give any significant improvement com-

pared to cw decoupling. The small phase angle rapid

cycling (SPARC) sequences [43] and the small phase

incremental alternation (SPINAL) sequences [44]

combine the TPPM scheme with a phase supercycle.

They show significant improvements in the offset be-

havior compared to TPPM in liquid-crystalline sam-

ples. However, in rigid, powdered solids the SPARC
and SPINAL sequences do not perform much better

than the original TPPM sequence. A continuous phase-

modulated variation of the TPPM sequence, called

cosine phase modulation (CPM m-n) [45], was never

shown to result in improved decoupling over a large

range of experimental conditions. An amplitude-mod-

ulated variation of TPPM called AM-TPPM [41] uses

third averaging by adding an amplitude modulated
field to the cw component of the TPPM irradiation.

Again, this modification shows very little improvement

compared to the original TPPM sequence.

A different type of rotor-synchronized decoupling

sequence, C12�1
2 [46], is based on a series of phase-

shifted ð2pÞu pulses and requires that the RF-field am-

plitude be equal to six times the spinning frequency. The

phase, u, is shifted by )30� between successive pulses.
The sequence�s decoupling performance is comparable

to that obtained by TPPM decoupling, but the rotor

synchronization and the requirement of an RF-field

amplitude of six times the spinning frequency make this

sequence less desirable at higher MAS frequencies.

Another type of rotor-synchronized decoupling se-

quence called X-inverse-X (XiX) [47] consists of two

pulses of equal length with a phase difference of 180�.
The decoupling performance depends only on the

length of the pulse and not on the flip angle of the

pulse, i.e., not on the RF-field amplitude. Under many

experimental conditions, XiX decoupling leads to sig-

nificant improvements in line intensity compared to

TPPM decoupling. In addition, the XiX decoupling

sequence has only one adjustable parameter, namely

the pulse length, and its optimum value is quite well
defined by the spinning frequency. Therefore, one only

needs to perform a local one-parameter optimization

compared to a two-dimensional optimization (pulse

length and pulse phase) in the case of the TPPM se-

quence. In addition, the XiX sequence is less sensitive

to RF-field inhomogeneities than the TPPM decou-

pling sequence. The use of phase-inversion decoupling

sequences under MAS has been suggested already
earlier for special situations, i.e., low RF fields and

relatively slow MAS [26] and weakly coupled proton

systems [30]. However, in both publications the prop-

erties of such a sequence were not analyzed and the

importance of the modulation-frequency to spinning-

frequency ratio was not recognized.

A common characteristic of all these sequences is that

the best decoupling is typically achieved for the highest
possible RF-field amplitude after optimization of all the

remaining parameters.

1.4. Low-power decoupling

Obviously, it is desirable to achieve the best possible

decoupling with the lowest possible RF-field amplitude.

Irradiating a sample using high-power RF fields for
extended periods of time can lead to undesired heating

of the sample especially if the sample contains water. In

addition, high RF fields put considerable strain on the

electronic components in the probe circuit and limit the

acquisition time.

Over the past 10 years the maximum obtainable MAS

frequencies have increased significantly. Today, com-

mercially available 2.5 mm o.d. rotors allow spinning
frequencies up to 30 kHz routinely, and spinning fre-

quencies up to 50 kHz can be obtained safely using ex-

perimental 1.8 mm o.d. spinning systems [48]. As

mentioned above, high MAS frequencies require, for

high-power decoupling schemes, correspondingly higher

decoupling fields. At an MAS frequency of 50 kHz the

minimum required RF-field strength for effective de-

coupling is about 150 kHz.
The demand for higher MAS frequencies is driven by

several developments. Firstly, increasing B0-field

strengths lead to an increase in the size of the CSA ten-

sors. To obtain a spectrum without strong sidebands one

needs to spin faster than the size of the CSA tensor,

which is on the order of 30 kHz for a carbonyl carbon

in a B0 field of 18.8 T (800 MHz proton resonance
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frequency). Secondly, the increase in B0 fields also leads
to a larger spread of the isotropic chemical shifts. To

avoid rotational-resonance recoupling conditions for

uniformly labeled samples, it is best to spin faster than

the width of the spectrum. For an 18.8-T magnet this

corresponds to a spinning frequency of 35 kHz for a

typical 13C spectrum. Lastly, it has been observed ex-

perimentally that the linewidth in uniformly 13C-la-

beled compounds decreases with increasing spinning
frequency.

As an alternative to high-power decoupling one can

use low-power cw decoupling [49] in addition to fast

MAS in order to achieve heteronuclear spin decoupling

with minimum power dissipation in the sample. Such an

approach is based on the reversal of the averaging

processes compared to high-power decoupling (Fig. 3b).

First the Hamiltonian is averaged by the MAS rotation,
and the time-averaged Hamiltonian is then truncated, in

a second step, by a weak RF field. The main require-

ment for such a scheme is that the terms in the time-

averaged Hamiltonian are significantly smaller than the

applied RF field. The maximum size of the RF-field is

determined by the fact that recoupling conditions [12–

16] have to be avoided since they can lead to significant

broadening of the lines by reintroduction of the dipolar
coupling.

1.5. General theoretical framework

For the theoretical description of decoupling in typ-

ical organic solids, we have to consider a system com-

posed of a single S-spin and many I-spins. This

corresponds to the situation of a dilute rare spin such as
13C or 15N coupled to an abundant spin bath such as

that given by 1H. The time-dependent Hamiltonian

under MAS of such a system in the usual rotating frame,

i.e., rotating with the Zeeman frequencies of the nuclei

about the B0-field direction, is given by

HðtÞ ¼ HCS
S þHCS

I þHJ
II þHJ

SI þHCSA
S ðtÞ

þHCSA
I ðtÞ þHdip

II ðtÞ þHdip
SI ðtÞ þHrf

I ðtÞ; ð1Þ

assuming that the I- and the S-spins have a spin-quan-

tum number of 1/2. The first four terms of Eq. (1) are

time-independent; HCS
S and HCS

I are the isotropic

chemical shifts of spins S and I, respectively; HJ
II de-

scribes the homonuclear isotropic J-couplings among

the spins; and HJ
SI describes the heteronuclear isotropic

J-couplings between the S- and the I-spins. The last four

terms of Eq. (1) describe orientation-dependent second-

rank tensor quantities, which are time-dependent due to

the mechanical rotation of the sample about the magic

angle. The chemical-shielding tensors of spins S and I

are described by HCSA
S ðtÞ and HCSA

I ðtÞ, respectively,

while Hdip
II ðtÞ describes the homonuclear dipolar cou-

plings among the I-spins, and Hdip
SI ðtÞ describes the

heteronuclear dipolar couplings between the S- and the
I-spins. The time-dependent RF irradiation (if any) on

the I-spins is described by Hrf
I ðtÞ. Explicit expressions

for the different terms can be found in the literature [17–

19] and are given in Appendix A.

In addition to the time dependence due to the MAS

rotation, all second-rank tensor terms also depend on

the orientation of the crystallite in the rotor-fixed co-

ordinate system (‘‘powder average’’). In principle, one
should write all the time-dependent Hamiltonians of

Eq. (1) not only as a function of time but also as a

function of the crystallite orientation, e.g., Hðt;XÞ,
where X ¼ ða; b; cÞ is the set of three Euler angles

which describes the orientation of the principal-axes

system of the interaction in the rotor-fixed frame of

reference. For simplicity of notation this dependence

on the Euler angles will be omitted and only explicitly
written where it is important for the understanding of

a given concept. To obtain the full spectrum of a

powder sample, we have to average the time-domain

signal Sðt; a; b; cÞ over all possible orientations of the

crystallites

S ¼ 1

8p2

Z 2p

0

da
Z p

0

sin bdb
Z 2p

0

dcSðt; a; b; cÞ: ð2Þ

To analyze a Hamiltonian with multiple time-depen-

dencies such as the one of Eq. (1) analytically or nu-

merically, there are different strategies available. One

can either use Shirley�s Floquet approach [50,51] to

convert the time-dependent Hamiltonian into a time-

independent but infinite-dimensional Hamiltonian. If

the two time dependencies are incommensurate, one

has to use a bimodal Floquet approach [52–55]. This
Floquet Hamiltonian can then either be diagonalized

analytically or numerically, or one can apply static

perturbation theory to obtain physical insight into the

problem. If the two time dependencies are commen-

surate one can also apply average Hamiltonian theory

(AHT) [1,17] to obtain a time-independent effective

Hamiltonian. For special classes of multiple-pulse se-

quences under MAS, one can use symmetry rules
[40,46] to simplify the calculation of the zeroth-order

average Hamiltonian and to estimate the size of the

first-order terms. If the time scales of the two time-

dependent processes are very different, one can also

apply average Hamiltonian theory using a sequential

averaging approach. This approach assumes that on

the time scale of the faster averaging process, the

slower time dependence is quasi-static and can be ne-
glected. Such an approach has to be applied carefully

since it is not able to describe any interference effects

between the two time-dependent processes. Several of

these methods will be used in the following chapters to

analyze the decoupling problem under various condi-

tions.
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2. High-power cw decoupling in isolated spin systems

2.1. Theory

The general case of a single S-spin coupled to many

homonuclearly coupled I-spins (see Eq. (1)) is quite

complicated and cannot usually be treated analytically.

We, therefore, simplify the system for our calculations

and consider only the case of a heteronuclear two-spin
system under cw RF irradiation. This corresponds to a C–

H or N–H system where we neglect the long-range het-

eronuclear dipolar couplings as well as all the homonu-

clear dipolar and J-couplings among the protons. The

Hamiltonian for such a system is given by a simplified

versionofEq. (1)which contains only the following terms:

HðtÞ ¼ HCS
S þHCS

I þHJ
SI þHCSA

S ðtÞ þHCSA
I ðtÞ

þHdip
SI ðtÞ þHrf

I

¼ xiso
S Sz þ xiso

I Iz þ pJ2SzIz þ xSðtÞSz

þ xIðtÞIz þ xSIðtÞ2SzIz þ x1Ix: ð3Þ

High-power cw decoupling describes the situation

where the nutation frequency corresponding to the

amplitude of the RF field, x1, is considerably larger

than the frequency of the MAS rotation, xr. In this case,
we can assume that the averaging by the RF field occurs

on a much shorter time-scale than the averaging by the

MAS sample rotation. We can, therefore, use a se-

quential averaging approach (see Fig. 3a) where we first

calculate the effect of the RF-field on the quasi-static

system Hamiltonian and then, in a second step, deter-

mine the influence of the MAS rotation on this partially

averaged Hamiltonian. There are several ways to do this
calculation. One possibility is to transform the system

Hamiltonian into an interaction frame quantized along

the RF field and apply average Hamiltonian theory to

obtain a time-independent, time-averaged Hamiltonian.

We will, however, use a different approach here. For a

two-spin system we can analytically diagonalize the

Hamiltonian under the assumption that it is quasi-static

on the time-scale of the RF-nutation frequency. The
quasi-static analytical solution can then be expanded in

a power series. Finally, the influence of the MAS rota-

tion on the eigenvalues of the quasi-static diagonalized

Hamiltonian is calculated.

Such an sequential approach will be compared with an

approach where the averaging by the RF-field and by the

MAS rotation are treated simultaneously using average

Hamiltonian theory. Here, we have to assume that the
RF-field amplitude is an integer multiple of the MAS

frequency.

2.1.1. Sequential averaging approach

We can diagonalize the Hamiltonian of Eq. (3) ana-

lytically and obtain four eigenvalues. For an initial

density operator rð0Þ ¼ Sx and a phase-sensitive detec-
tion operator S� we obtain an FID

Sðt; t2Þ ¼
X4

m¼1

SmðtÞeþixðmÞðtÞt2 ; ð4Þ

which has four components. The four transition frequen-

cies xðmÞðtÞ (m ¼ 1; . . . ; 4) are symmetric about the carbon

resonance frequency, xiso
S þ xsðtÞ, and are given by [1]:

xð1;2ÞðtÞ ¼ xiso
S þxSðtÞ

�x1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxSIðtÞ þ pJSIÞ þ ðxIðtÞ þxiso

I Þ
x1

� �2
s2
4

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxSIðtÞ þ pJSIÞ � ðxIðtÞ þxiso

I Þ
x1

� �2
s 3

5
ð5Þ

and

xð3;4ÞðtÞ ¼ xiso
S þxSðtÞ

�x1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxSIðtÞ þ pJSIÞ þ ðxIðtÞ þxiso

I Þ
x1

� �2
s2
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxSIðtÞ þ pJSIÞ � ðxIðtÞ þxiso

I Þ
x1

� �2
s 3

5:
ð6Þ

All symbols used in the Eqs. (5) and (6) are defined in

Appendix A. The corresponding signal intensities of

these four resonance lines are given by

S1;2ðtÞ

¼ 1

4
� 1

4
1

0
B@ þ 4ðxSIðtÞ þ pJSIÞ2x2

1

ðxSIðtÞ þ pJSIÞ2 þ ðxIðtÞ þxiso
I Þ2 þx2

1

� �2

1
CA

�1=2

ð7Þ

and

S3;4ðtÞ

¼ 1

4
þ 1

4
1

0
B@ þ 4ðxSIðtÞþ pJSIÞ2x2

1

ðxSIðtÞþ pJSIÞ2 þ ðxIðtÞ þxiso
I Þ2 þx2

1

� �2

1
CA

�1=2

:

ð8Þ

In the limit of strong decoupling, i.e., x1 � ðxSIðtÞ þ
pJSIÞ and, x1 � ðx1ðtÞ þ xiso

I Þ, the intensities S1ðtÞ and

S2ðtÞ are small. The transition frequencies xð1ÞðtÞ and

xð2ÞðtÞ (Eq. (5)) correspond to the decoupling sidebands,

which appear with a frequency offset approximately equal

to the RF-field strength [28]. They will, therefore, be ne-
glected in the further discussion. Without RF irradiation,

i.e., x1 ¼ 0Hz, the intensities S1ðtÞ and S2ðtÞ are, as

expected, zero. The intensities S3ðtÞ and S4ðtÞ tend to-

wards 1/2 for strong and vanishing decoupling fields.

To analyze the coupling between the heteronuclear

coupling term, xSIðtÞ þ pJSI, and the chemical-shift
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term, xIðtÞ þ xiso
I , in Eq. (6), we expand the square root

as a power series and obtain the following approximate

expression for the transition frequencies [30]:

xð3;4ÞðtÞ � xiso
S þ xSðtÞ

� ðxSIðtÞ þ pJSIÞðxIðtÞ þ xiso
I Þ

x1

� �
: ð9Þ

The two transition frequencies describe a splitting of the

S-spin line due to a second-order recoupling of the

heteronuclear coupling term (either anisotropic dipolar

coupling or isotropic J-coupling) with an I-spin chemi-

cal-shift term (either anisotropic chemical-shielding
tensor or isotropic chemical shift).

Assuming that the sample rotation is slow compared

to the time-scale of the RF nutation (xr 	 x1), one can

now apply average Hamiltonian theory to the transition

frequencies to eliminate the time dependence due to the

sample rotation:

�xxð3;4Þ ¼ 1

sr

Z sr

0

xð3;4ÞðtÞdt

� 1

sr

Z sr

0

xiso
S

�
þ xSðtÞ

� ðxSIðtÞ þ pJSIÞðxIðtÞ þ xiso
I Þ

x1

� ��
dt: ð10Þ

Here, the integration represents the time average over a

full rotor period, sr ¼ 2p=xr.

We will calculate the averaging by the sample rotation

in a general way as a rotation about an arbitrary axis in-

clined at an angle, hr, with respect to the static magnetic

field. To do this, we have to consider the transformations
of both second-rank tensors from their respective princi-

pal-axes systems (PAS) into the laboratory-fixed coordi-

nate system (Fig. 6). The chemical-shielding tensor is first

rotated into the PAS system of the dipolar-coupling ten-

sor. Then both the chemical-shielding tensor and the di-
polar-coupling tensor are rotated into the rotor-fixed

frame from which they are subsequently rotated into the

laboratory-fixed coordinate system. This leads to the

following time-dependent transformation for the two

tensors:

xSIðt;XÞ

¼ 1ffiffiffi
6

p
X�2

n¼2

D2
n;0ð�xrt;�hr; 0ÞD2

0;nða; b; cÞqSI
2;0; ð11Þ

xIðt;XÞ ¼ 2ffiffiffi
6

p
X2

m¼�2

X2

m0¼�2

�
X2

m00¼�2

D2
m;0ð�xrt;�hr; 0Þ

� D2
m0 ;mða; b; cÞD

2
m00 ;m0 ðaI; bI; cIÞqI

2;m00 : ð12Þ
The Wigner rotation-matrix elements D2

m;nða; b; cÞ are

defined according to the conventions defined in [56]. The

sample spinning frequency is given by xr; X ¼ ða; b; cÞ is

the set of Euler angles which describes the transforma-

tion from the principal-axes system of the dipolar-cou-

pling tensor to the rotor-fixed coordinate system

(powder average); and ðaI; bI; cIÞ are the three Euler

angles describing the orientation of the I-spin chemical-
shielding tensor in the principal-axes system of the di-

polar-coupling tensor. The spherical-tensor notation of

the two tensors (q2;m elements) is defined in Appendix A.

We can now insert Eqs. (11) and (12) into Eq. (10)

and simplify the resulting expression. The time-averaged

product of two second-rank tensors has, to zeroth-order

approximation, non-vanishing contributions only under

the condition m ¼ �n, where m and n are the summation
indices in Eqs. (11) and (12), respectively. Under this

condition Eq. (10) can be substantially simplified, and

one obtains the following result for the time-averaged

transition frequencies:

�xxð3;4ÞðXÞ ¼ xiso
S � pJSIxiso

I

x1

þ
ffiffiffi
2

3

r
d2

0;0ðhrÞ
X2

m0¼�2

D2
m0 ;0ða;b;0Þ

�
X2

m00¼�2

D2
m00 ;m0 ðaS;bS;0ÞqS

2;m00 �
pJSI

x1

ffiffiffi
2

3

r
d2

0;0ðhrÞ

�
X2

m0¼�2

D2
m0 ;0ða;b; 0Þ

X2

m00¼�2

D2
m00 ;m0 ðaI;bI;0ÞqI

2;m00

�xiso
I

x1

1ffiffiffi
6

p d2
0;0ðhrÞ

X�2

n¼2

D2
0;nða;b;0ÞqSI

2;0 �
1

3x1

qSI
2;0

�
X
j¼0;2;4

Cð2;2; j; 0;0Þdj
0;0ðhrÞ

�
X2

m0¼�2

D
j
m0 ;0ða;b; 0ÞCð2;2; j; 0;m0Þ

�
X2

m00¼�2

D2
m00 ;m0 ðaI;bI;0ÞqI

2;m00 : ð13Þ

Fig. 6. Sequence of transformations and Euler angles necessary to rotate

the two tensors from their respective principal-axes systems into the

laboratory-fixed coordinate system. The chemical-shielding tensor is

first rotated into the principal-axes system of the dipolar coupling tensor

(D2ðaI;bI; cIÞ), then both tensors are rotated into the rotor-fixed frame

(D2ða;b; cÞ), and from there, finally, into the laboratory-fixed frame

(D2ð�xrt;�hr; 0Þ).
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Here, Cðj1; j2; j;m1;m2) are the Clebsch–Gordan coeffi-
cients as defined in [57] and dj

m;nðbÞ are reduced Wigner

rotation-matrix elements [56]. The angle c was assumed

to be zero since it only changes the orientation of the

rotor at the start of the experiment. All other symbols

have been defined previously.

The first term in Eq. (13) represents the isotropic

chemical shift of spin S, the second term the isotropic

splitting due to off-resonance decoupling [2,3]. The third
term describes the chemical-shielding tensor of the S-

spin, the fourth term is the cross-term between the iso-

tropic J-coupling and the chemical-shielding tensor of

the I-spin, and the fifth term is the cross-term of the

isotropic chemical shift of the I-spin and the heteronu-

clear dipolar-coupling tensor. These latter three terms

scale as second-rank tensors with P2ðcos hrÞ ¼ d2
0;0ðhrÞ.

The last term in Eq. (13) is the cross-term between the
chemical-shielding tensor of the I-spin and the hetero-

nuclear dipolar-coupling tensor. It consists of the sum of

three different terms (j ¼ 0; 2; 4) which scale as a zeroth-

rank, a second-rank, and a fourth-rank tensor under

single-axis rotation.

Setting the angle of the rotation axis to hr ¼ 0� gives

the solution for the static spectrum. Under this condi-

tion all scaling factors dj0;0 ¼ 1 and all terms contribute
to the line shape of the S-spin resonance. If the incli-

nation angle of the rotation axis with respect to the

static magnetic field corresponds to the magic angle

(hr ¼ hm � 54:74�), all second-rank tensor contributions

to the transition frequencies will vanish, because

d j
0;0ðhmÞ ¼ 0. The chemical-shielding tensor of the

S-spin, the cross-term between the isotropic J-coupling

and the chemical-shielding tensor of the I-spin, the
cross-term between the isotropic chemical shift of the I-

spin and the heteronuclear dipolar-coupling tensor, and

the second-rank tensor contribution to the cross-term

between the chemical-shielding tensor and the hetero-

nuclear dipolar-coupling tensor will be scaled to zero.

Only the isotropic chemical shift of the S-spin, the off-

resonance decoupling term, and the isotropic and scaled

fourth-rank tensor parts of the second-order cross-term
remain:

�xxð3;4ÞðXÞ ¼ xiso
S � pJSIxiso

I

x1

� 1

3x1

qSI
2;0

X
j¼0;4

Cð2; 2; j; 0; 0Þd j
0;0ðhmÞ

�
Xj
m0¼�j

D
j
m0 ;0ða; b; 0ÞCð2; 2; j; 0;m0Þ

�
X2

m00¼�2

D2
m00 ;m0 ðaI; bI; 0ÞqI

2;m00 : ð14Þ

For each crystallite orientation, the spectrum consists of

a doublet centered about the isotropic chemical shift of

the S-spin. The splitting consists of an orientation-in-
dependent part given by the off-resonance decoupling

term and by the zeroth-rank tensor part of the second-

order cross-term and an orientation-dependent part gi-

ven by the fourth-rank tensor contribution to the sec-

ond-order cross-term.

It is, in principle, possible to average out both the

second-rank and the fourth-rank tensor components of

Eq. (13) by using dynamic-angle spinning (DAS) (se-
quential averaging) or double rotation (DOR) (simul-

taneous averaging) techniques [32–34]. In this case the

resonance frequencies are given by

�xxð3;4ÞðXÞ ¼ xiso
S

� pJSIxiso
I

x1

 
þ 1

15x1

qSI
2;0

X2

m00¼�2

D2
m00 ;0ðaI;bI;0ÞqI

2;m00

!
;

ð15Þ

and the resulting second-order splitting is fully isotropic

and gives rise to a spectrum that consists of a sharp
doublet centered about the isotropic chemical shift of

the S-spin. The splitting of the line is determined by the

off-resonance decoupling term and the isotropic part

(m00 ¼ 0) of the second-order cross-term.

Eqs. (13) and (14) allow very efficient simulation of

second-order spectra, which is important if extraction of

parameters from experimental spectra is desired. Non-

linear least-square fitting to obtain parameters (e.g.,
orientation of the two tensors) and their corresponding

error ranges is, in principle, possible based on this an-

alytical solution assuming that the two-spin model is a

good approximation.

2.1.2. Simultaneous averaging of space and spin parts

We can also calculate the average Hamiltonian for an

SI two-spin system by simultaneously time averaging
over the MAS rotation and over the rotation due to

interaction-frame transformation by the RF field. Here,

we have to assume that x1=xr ¼ p is an integer, i.e., we

assume that the two rotations are synchronized. If we

avoid the rotary-resonance conditions, i.e., by assuming

p > 2, we obtain for the zeroth-order average Hamilto-

nian:

H
ð0Þ ¼ HCS

S ¼ xiso
S Sz ð16Þ

and for the first-order average Hamiltonian:

H
ð1Þ ¼ 1

xr

pJSIxiso
I

p
þ �4p þ p3

4 � 5p2 þ p4
xþ1

SI x�1
I þ x�1

SI xþ1
I

� ��

þ �p þ p3

4 � 5p2 þ p4
xþ2

SI x�2
I

�
þ x�2

SI xþ2
I

��
2SzIx: ð17Þ

For simplicity only terms involving S-spin operators

are shown. The constants xm
SI and xm

I are the Fourier

coefficients of the time-dependent heteronuclear dipo-

lar coupling and the I-spin chemical-shielding tensor,
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respectively. They are defined in Appendix A. For large
values of p, we can simplify Eq. (17) and obtain

H
ð1Þ ¼ pJSIxiso

I

x1

2
66664 þ

X2

m¼�2
m 6¼0

x�m
SI xþm

I

x1

3
777752SzIx: ð18Þ

The result obtained in Eq. (18) is fully equivalent to the
result obtained from sequential averaging in Eq. (10).

This can easily be seen by expanding the time-dependent

chemical-shielding tensor and the dipolar-coupling ten-

sor of Eq. (10) as Fourier series (see Eqs. (A.6) and (A.8)

in Appendix A) and keeping only the time-independent

terms. Both approaches clearly show that the cross-term

between the chemical-shielding tensor and the hetero-

nuclear dipolar-coupling tensor dominates the residual
linewidth in high-power cw-decoupled spectra of iso-

lated spin pairs.

2.2. Numerical simulations

Simulations to analyze the behavior of an isolated

two-spin system were carried out using the NMR sim-

ulation environment GAMMA [58]. Numerical values
close to the values found for the model compound, [d9]-

trimethyl-15N-ammonium chloride (see Fig. 5) were used

in the numerical simulations. The anisotropy of the di-

polar-coupling tensor was set to dSI=ð2pÞ ¼ 20 kHz, and

the chemical-shielding tensor was assumed to be axially

symmetric (gI ¼ 0) with an anisotropy of dI=ð2pÞ ¼ 6:8
kHz. The two tensors were assumed to be coaxial unless

otherwise mentioned.
The accuracy of simulations based on the approxi-

mate analytical solution from second-order perturbation

theory [Eq. (14)] was tested by comparing exact nu-

merical simulations calculated by small-step integration

of the time-dependent Hamiltonian with simulations

based on the analytical solution at different RF-field

strengths. The numerical simulations were done for an

MAS frequency of xr=ð2pÞ ¼ 5 kHz and with 5000 time
steps per rotor cycle leading to a 40-ns time resolution.

Simulations for 300 different crystallite orientations was

summed and the method of Cheng et al. [59] was used to

obtain optimum coverage of the sphere. The dwell time

was set to one third of the rotor cycle (full SW¼ 15 kHz)

and 4096 data points were computed. The spectra were

processed using an exponential line broadening of

100 Hz. The spectra based on the approximate analytical
solution of the time-averaged Hamiltonian were calcu-

lated directly in the frequency domain. All parameters

were the same as in the time-domain simulations except

that 10,000 different powder orientations were summed.

The resulting frequency-domain spectra were convolved

with a 100-Hz Lorentzian line. The spectra in Fig. 7 are

calculated for three different RF-field strengths

x1=ð2pÞ ¼ 70, 30, and 10 kHz. For the two higher RF-

field strengths the two simulation methods agree very

well with differences in the central line on the order of

1%. These small deviations are most likely due to the

truncation terms higher than second order in the ana-

lytical solution or to the relatively low number of
powder points used in the time-domain simulation. The

spinning sidebands at �5000 Hz observed in the nu-

merical simulations are not present in the analytical

solution because it is based on the assumption of a

stroboscopic observation. For x1=ð2pÞ ¼ 10 kHz (Fig.

7c), the differences are large and the line shapes of

the two spectra do not agree at all. This is due to the

breakdown of the assumptions made in deriving the
analytical solution in Eq. (14). At an RF-field strength

of 10 kHz the decoupling field strength is no longer

greater than the magnitudes of the chemical-shielding

and the dipolar-coupling tensors. In addition, the n ¼ 2

rotary-resonance condition [12–15] is fulfilled, which

cannot be described by a sequential averaging approach

as was used in deriving the approximate analytical

equation. The advantage of the frequency-domain sim-
ulation based on the analytical solution is its computa-

tion speed. The frequency-domain simulation is about

6000 times faster than the time-domain simulation using

Fig. 7. Comparison of simulations based on small-step numerical in-

tegration of the time-dependent Hamiltonian and simulations based on

the approximate analytical solution (Eq. (14)) for three different de-

coupling field strengths. The two methods of simulations at

x1=ð2pÞ ¼ 70 and 30 kHz show differences on the order of one percent.

The simulations at x1=ð2pÞ ¼ 10 kHz are very different from each

other, which reflects the fact that the assumptions made in the second-

order truncation (Eq. (8)) are not valid here (figure adapted from [30]).
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small step integration of the Liouville–von Neumann
equation.

Fig. 8 shows simulations of the second-order recou-

pled spectra under static (a), magic-angle sample spin-

ning (b), and double-rotation (c) conditions illustrating

the averaging properties of the second-order recoupled

Hamiltonian under spatial rotation. The simulations

were performed as frequency-domain simulations based

on the analytical solution shown in Eq. (13). The de-
coupling field strength was x1=ð2pÞ ¼ 71:5 kHz. Ten-

thousand different crystallite orientations were summed

and the resulting spectrum was convolved with a Lo-

rentzian line of width 50 Hz. The static spectrum (Fig.

8a) is very broad with a full width at the base of

1838 Hz. It is the result of a superposition of the iso-

tropic splitting with both the second-rank and the

fourth-rank contributions to the second-order Hamil-
tonian. The MAS spectrum (Fig. 8b) shows a pure

fourth-rank tensor powder pattern superimposed on the

isotropic splitting with a full width of 528 Hz close to the

bottom of the line. The DOR spectrum (Fig. 8c) shows,

as expected, two sharp lines with an isotropic splitting of

363 Hz.

The dependence of the second-order recoupled spec-

tra on the relative orientation of the two tensors is il-
lustrated in Fig. 9. The simulations were done as

frequency-domain simulations using the same parame-

ters as for the spectra shown in Fig. 8. It can clearly be

seen that there is a strong dependence of the line shape

on the angle bI as expected from Eq. (14). It is not

straightforward to predict the line shape from Eq. (14),

especially if the chemical-shielding tensor is not axially

symmetric. The simulations of Fig. 9, however, show
that the variations could be strong enough to allow the

determination of the angle between the two tensors from

this type of second-order spectrum, assuming that the

investigated system can indeed be described by an iso-

lated two-spin system.

2.3. Experimental results

As a model substance for an isolated two-spin sys-

tem, fully 15N-labeled tri-(trideuteromethyl)-ammonium

chloride (1H–15N spin system) was used. The synthesis of

[d10]-trimethyl-15N-ammonium chloride is described in

the literature [21]. The shortest nitrogen–nitrogen dis-

tance calculated from the crystallographic data for tri-

methyl-ammonium chloride [60] is 5.7�AA corresponding

to a dipolar-coupling constant of dNN=ð2pÞ ¼ 13:3Hz.
The shortest proton–proton distance is of similar mag-

nitude in the methyl-deuterated compound. The chemi-

cal-shielding tensor of 15N in this compound is very

small. A static proton-decoupled spectrum (data not

shown) using XiX decoupling [47] resulted in a Gaussian

line with a half width at half height of 290 Hz. The

chemical-shielding tensor of the proton was not mea-

sured directly. Its anisotropy was obtained from fitting
the second-order MAS spectrum assuming that the PAS

of the chemical-shielding tensor of the proton and the

PAS of the dipolar-coupling tensor are coaxial. The va-

lue obtained from these fits was dH=ð2pÞ ¼ 6800 �
200 Hz. This value agrees with independent measure-

ments of the chemical-shielding tensor [61]. The anisot-

ropy of the dipolar coupling of the 15N–1H spin pair was

measured from static and slow-spinning MAS spectra

Fig. 8. Simulated second-order line shape under static, magic-angle

spinning, and double-rotation conditions. The static spectrum is very

broad and shows a superposition of a zeroth-rank, a second-rank, and

a fourth-rank tensor contribution to the Hamiltonian. The MAS

spectrum is a pure fourth-rank tensor powder pattern superimposed on

an isotropic splitting. The DOR spectrum shows only the isotropic

splitting (figure adapted from [30]).

Fig. 9. Dependence of the second-order recoupled spectrum on the

orientation of the two tensors. The chemical-shielding tensor was as-

sumed to be axially symmetric so only one parameter (bI) is needed to

describe the orientation of the principal-axes systems of the two ten-

sors. The line shape of the spectra depends very strongly on the relative

orientation (figure adapted from [30]).
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and was found to be dNH=ð2pÞ ¼ 20110 � 210 Hz corre-
sponding to a distance of rNH ¼ 1:066 � 0:004�AA.

Fig. 10 shows one-dimensional 15N spectra acquired

without (a) and with (b and c) decoupling of the protons

by cw irradiation. All three spectra were recorded at an

MAS frequency of 30 kHz. The spectrum without de-

coupling (Fig. 10a) shows a sharp doublet with a split-

ting equal to the known one-bond JNH-coupling of

about 100 Hz. The appearance of the doublet indicates
that the spin-diffusion rate constant is below 100 Hz [22].

Figs. 10b and c show the cw-decoupled 15N spectra

(x1=2p ¼ 100 kHz) of [d9]-trimethyl-15N-ammonium

chloride at an MAS frequency of 30 kHz and at proton

resonance frequencies of 600 MHz (Fig. 10b) and

300 MHz (Fig. 10c). Due to the high-spinning frequency

and the perdeuteration of the methyl groups, the proton

spin-diffusion rate constant is quite small, and the cross-
term between the dipolar-coupling tensor and the CSA

tensor dominates the spectrum. Therefore, we observe

two well-separated lines with a splitting proportional to

the proton resonance frequency. The fine structure vis-

ible in the numerical simulations (Fig. 9) is not observed

in the experimental 15N spectrum of trimethyl-ammo-

nium chloride.

Fig. 11 shows a series of 15N spectra where the proton
decoupling field strengths was varied from x1=2p ¼
17 to 72 kHz. The spectra were recorded at an MAS

spinning frequency of xr=ð2pÞ ¼ 5 kHz. The linewidths

near the base of the peaks at different decoupling powers
correlate very well with the inverse of the proton de-

coupling field strength as expected from the theoretical

calculations shown in Section 2.1. This suggests that

neglecting all terms higher than second order in the

perturbation expansion of Eq. (10) was justified.

As mentioned already in Section 2.1, the second-order

recoupling can be made isotropic by performing the ex-

periment under DOR or DAS conditions. Fig. 12 shows
a one-dimensional slice through a two-dimensional DAS

spectrum and, for comparison, an MAS spectrum re-

corded under similar conditions [30]. The DAS spectrum

shows a significant narrowing of the line due to the av-

eraging of both the second-rank and fourth-rank tensors.

However, the DAS spectrum still has very broad lines,

which may be due to inaccuracies in adjusting the two

DAS angles or to differences in the cw-decoupling field
strengths at the two different rotor orientations [62]. The

Fig. 10. (a) 15N spectrum of [d9]-trimethyl-15N-ammonium chloride

without proton decoupling recorded at an MAS spinning frequency of

30 kHz. The visible splitting is the one-bond JNH-coupling of about

100Hz. cw-decoupled 15N spectra at proton resonance frequencies of

(b) 300MHz and (c) 600MHz at an MAS spinning frequency of

30 kHz and a decoupling field strength of 100 kHz.

Fig. 11. 15N spectra of [d9]-trimethyl-15N-ammonium chloride as a

function of the proton decoupling power. The decoupling field strength

was varied from x1=ð2pÞ ¼ 17 to 72 kHz. The linewidth scales to a

good approximation with 1=x1 (figure adapted from [30]).

Fig. 12. Nitrogen magic-angle spinning (MAS) and dynamic-angle

spinning (DAS) spectra of [d9]-trimethyl-15N-ammonium chloride for

a decoupling field strength of x1=ð2pÞ ¼ 35:7 kHz (figure adapted from

[30]).
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splitting obtained by a fit of the DAS spectrum to two
Lorentzian lines is Dx ¼ 650 � 100 Hz. It would be ad-

vantageous to implement this experiment under DOR

instead of DAS. Both problems, the adjustment of the

two angles and the differences in the RF field strengths,

would not be present under DOR.

3. High-power cw decoupling in strongly coupled spin
systems

3.1. Theory

Experimentally, a typical organic solid with strong

proton–proton couplings shows relatively sharp lines

under cw decoupling and moderate MAS frequencies

(see Fig. 4) and not the splitting and broadening pre-
dicted by the analysis of an isolated two-spin system (see

Eq. (14) and Fig. 5). Thus, it is obvious that the de-

scription of Section 2 is not realistic for many spin

systems. In rigid organic solids, one is usually faced with

an SIN-spin system where the I-spin is not isolated but

coupled to a large number of abundant I-spins. The

dense coupling network of the I-spins was neglected in

the isolated two-spin system model. It is not clear a
priori how many I-spins one would have to include be-

fore one obtains a realistic picture of a strongly coupled

spin system. It has been estimated [63] that one needs

approximately 15 homonuclear spins to reasonably ap-

proximate a multi-spin system. An analytical description

or a numerical simulation of such a spin system becomes

very difficult because the size of the Hilbert space is

large, e.g., for a 15-spin system the size of a matrix
representation of the Hilbert space is 32,768 by 32,768,

and numerical simulations are only possible by using

special methods. One, therefore, needs a model to in-

clude the effects of the strong homonuclear dipolar-

coupling network in the simple coherent two-spin model

without increasing the dimension of the matrix repre-

sentation of the density operator.

For labeled samples, one should, in principle, con-
sider an SMIN-spin system where the homonuclear

couplings between the S-spins (homonuclear J and di-

polar couplings) are included. Typically the gyromag-

netic ratio of the S-spins is much lower than that of the

I-spins (cI=cS ¼ 4 for I ¼ 1H and S ¼ 13C, cI=cS ¼ 10 for

I ¼ 1H and S ¼ 15N). The strength of the homonuclear

dipolar-coupling network among the S-spins is much

weaker since the magnitude of the dipolar couplings
depend on the product of the gyromagnetic ratios of the

two-coupled spins (see Appendix A). Even for moderate

MAS frequencies we expect, therefore, that the influence

of the homonuclear dipolar couplings among the S-spins

will be averaged out and can usually be neglected. The

homonuclear J-couplings among the S-spins are invari-

ant under MAS and heteronuclear decoupling and will

only lead to an additional multiplet structures of the S-

spin resonances.

One possible model is the description of the strong

coupling among the abundant I-spins by a spin-diffusion

type superoperator, which is isotropic in the I-spin space

and leads to spin flips between the a and the b states of

the I-spins (Fig. 13). Such a superoperator has been used

before in the context of transient oscillation in hetero-
nuclear Hartmann–Hahn cross-polarization [64]. In or-

der to include the spin-diffusion superoperator in the

description of the spin system, one has to use a Liou-

ville-space representation [1] with the Liouvillian given

by:

L̂LðtÞ ¼ i½HðtÞ; � þ ĈC ¼ i ĤHðtÞ þ ĈC: ð19Þ

The Hamiltonian, HðtÞ, describes the coherent two-spin

system and is given by Eq. (3) while the spin-diffusion

superoperator is given by

ĈC ¼ kIð½Ix; ½Ix; �� þ ½Iy ; ½Iy ; �� þ ½Iz; ½Iz; ��Þ: ð20Þ

The term spin diffusion in the present context character-

izes a generalized polarization-transfer process among the

I-spins, which is propagated by flip-flop processes. The

superoperator of Eq. (20) is the most simple one since

there is only a single rate constant, kI, that characterizes

the polarization-transfer process in the proton bath. One

could also use an anisotropic version of ĈC with three rate
constants, kx, ky , and kz but there is no evidence that

supports or requires such a complication.

If we calculate the proton decay under the superop-

erator of Eq. (20), we find

hIziðtÞ ¼ hIzið0Þe�2kIt: ð21Þ
This relation provides the possibility of experimentally

determining the spin-diffusion rate constant needed for

the model of Eq. (19).

In the context of the I-spin homonuclear polariza-

tion-transfer process, the homonuclear dipolar-coupling

Hamiltonian plays the most important role. Under high-

power cw irradiation and MAS, the effective homonu-

Fig. 13. Schematic representation of the theoretical model used to

simulate heteronuclear spin decoupling. One S-spin and a single I-spin

are described fully quantum mechanically by a Hamiltonian, and the I

spin is coupled by a spin-diffusion type superoperator to an I-spin

bath.
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clear dipolar-coupling Hamiltonian of Eq. (1) is scaled
by a factor of 1/4 compared to the effective dipolar-

coupling Hamiltonian under MAS alone [22] (see also

Eq. (30)). The Hamiltonian is scaled by the RF irradi-

ation by )1/2 due to the second-rank tensor properties

of the spin part of the homonuclear dipolar coupling:

H
dip

II ðtÞ ¼ � 1

2
Hdip

II ðtÞ: ð22Þ

Magic-angle spinning influences only the spatial part

of the homonuclear dipolar coupling. Due to the sec-

ond-rank tensor properties of the spatial part of the
homonuclear dipolar interaction, the zeroth-order

average Hamiltonian term vanishes over a full rotor

period, sr ¼ 2p=xr:

H
ð0Þ
II ¼ 1

sr

Z sr

0

H
dip

II ðtÞdt ¼ 0 ð23Þ

The first-order average Hamiltonian term for the ho-

monuclear dipolar interaction H
dip

II ðtÞ is given by

H
ð1Þ
II ¼ �i

2sr

Z st

0

dt2

Z t2

0

H
dip

II ðt2Þ;H
dip

II ðt1Þ
h i

dt1

¼ 1

4xr

X
n6¼k;‘
k<‘

�xxnk‘ð4InxIkyI‘z � 4InxIkzI‘yÞ; ð24Þ

where �xxnk‘ depends on the geometry of the dipolar-

coupling network (distances and orientation) but not
on the MAS rotation frequency. Its full functional

form is given in Appendix B. Except for the direction

of the quantization axis (x in the rotating frame, z in

the laboratory frame), we obtain the same functional

form of the effective Hamiltonian as with MAS alone

(see Eq. (30)). While the form of H
ð1Þ
II differs from the

one of the static dipolar interaction, Hdip
II , it still causes

proton flip-flop processes. This type of Hamiltonian
can also mediate the same type of polarization transfer

as is found in static spin diffusion [22,65,66]. We ex-

pect, therefore, that the spin-diffusion rate constant

scales with the inverse of the MAS-spinning frequency

and that there is a factor of four difference between the

laboratory-frame and the rotating-frame spin-diffusion

rate constants.

By diagonalizing the Liouvillian of Eq. (19) one can
obtain the resonance frequencies and the linewidths of

the various transitions. For kI < ½ðxiso
I þ xIðtÞðpJSI þ

xSIðtÞÞ�=x1 we obtain two one-quantum S-spin transi-

tions with the resonance frequencies:

xð1;2ÞðtÞ � ðxiso
S þ xSðtÞÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiso

I þ xIðtÞÞðpJSI þ xSIðtÞÞ
x1

� �2

� kI
2

s

ð25Þ

and the linewidth Dð1;2Þ
1=2 � kI=p (full width at half height).

Both resonances have the same intensity. For kI >
½ðxiso

I þ xIðtÞÞðpJSI þ xSIðtÞÞ�=x1 we obtain two degen-

erate lines with the resonance frequency xð1;2Þ � ðxiso
S þ

xSðtÞÞ and the linewidths:

Dð1;2Þ
1=2 ðtÞ

¼ kI

0
@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

I

ðxiso
I þ xIðtÞÞðpJSI þ xSIðtÞÞ

x1

� �2
s 1

A,p:

ð26Þ

However, the broader of the two resonances has negli-

gible intensity. Eqs. (25) and (26) are based on an ap-

proximate solution of the eigenvalues of the Liouvillian

of Eq. (19).

Fig. 14 shows the numerically calculated transition

frequencies (Fig. 14a) and linewidths (Fig. 14b) for an

instantaneous time point during MAS in a dipolar-

coupled two-spin system as a function of the proton
spin-diffusion rate constant, kI. The data were obtained

by numerically diagonalizing the Liouvillian of Eq. (19)

but are in excellent agreement with the approximate

solutions of Eqs. (25) and (26). The data shown in Fig.

14 were calculated using the parameters ðxiso
I þ xIðtÞÞ=

ð2pÞ ¼ 2:5 kHz, x1=ð2pÞ ¼ 100 kHz, and ðxSIðtÞ þ pJSIÞ
=ð2pÞ ¼ 10 kHz (solid lines), and 20 kHz (dashed lines),

respectively. The heteronuclear J-coupling and the
chemical-shielding tensor of the S-spin were assumed to

be zero.

In an MAS experiment, the resonance frequencies,

the linewidths, and the line intensities are functions of

the rotor position and are, therefore, time-dependent.

The averaging of these variables over a rotor cycle has

no simple analytical solution. In addition we have to

perform a powder average over all possible crystallite

Fig. 14. (a) Calculated resonance frequencies as a function of the spin-

diffusion rate constant kI. (b) Calculated linewidth D1=2 (full width at

half height) under the same conditions (figure adapted from [21]).
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orientations. In Section 3.2, we use numerical Liouville-
space simulations to illustrate the line shape and the

behavior of the spin system for different values of the

spin-diffusion rate constant, kI.

3.2. Numerical simulations

The simulations shown in Fig. 15 illustrate the be-

havior of a two-spin system as a function of the I-spin,
spin-diffusion rate constant, kI. All simulations were

carried out using the method of small-step, piecewise-

constant integration of the Liouville–von Neumann

equation. Fig. 15 shows the simulated powder patterns

for a C–H two-spin system for values of kI ranging from

kI ¼ 0s�1 to kI ¼ 4000s�1. The dipolar coupling used in

the simulations corresponds to a one-bond C–H cou-

pling (dSI=ð2pÞ ¼ 46 kHz) while the CSA tensor of the I-
spin was assumed to be parallel to the dipolar coupling

with a value of Dr ¼ 6 ppm at a proton resonance fre-

quency of 600MHz. The decoupling field strength was

set to x1=ð2pÞ ¼ 100 kHz. For kI ¼ 0s�1 we obtain the

expected two lines for each crystallite orientation in the

powder, leading to a fourth-rank powder pattern. With

increasing values of k we see a smoothening of the sharp

features of the doublet and the emergence of a sharp line
in the center. For kI ¼ 4000s�1 we obtain a single, rel-

atively sharp line at the S-spin isotropic shift position

with a full width at half height of about 65 Hz. The

simulations of Fig. 15 show that the spin-diffusion

model qualitatively describes the expected behavior of a

heteronuclear two-spin system. A more quantitative

comparison between the model and experimental results

will be given in Section 3.3.

3.3. Comparison between experiments and simulations

To judge the accuracy of the theoretical model de-

scribed in Section 3.1 we have to know the magnitude of

the proton spin-diffusion rate constant in order to

compare measured spectra with simulations using the

spin-diffusion model. The proton spin-diffusion rate

constant in 8% labeled [2-13C]alanine has been measured

following the scheme of local polarization injection [67].
A schematic of the pulse sequence used for the mea-

surements is shown in Fig. 16. It generates localized

polarization at protons directly bound to 13C spins. The

first cross-polarization (CP) step is only used to enhance

the signal intensity. The second and third CP steps are

short (scp ¼ 75ls) to ensure that the only significant

polarization transfer is via one-bond proton-carbon di-

polar couplings and to avoid proton spin diffusion
during the cross-polarization time. During the mixing

time, sm, the magnetization is either spin-locked (rotat-

ing-frame spin-diffusion measurement) or aligned along

the z-axis by two 90� pulses (laboratory-frame spin-

diffusion measurement). The intensity of the carbon

magnetization is measured as a function of the mixing

time, sm. Fig. 17 shows the results of the rotating-frame

(Fig. 17a) and the laboratory-frame (Fig. 17b) mea-
surements for five different spinning frequencies. The

solid lines in Fig. 17a show the best mono-exponential

fits to the experimental data. One can clearly see that the

assumption of a mono-exponential decay was fulfilled to

a good approximation. The laboratory-frame measure-

ments of Fig. 17b also show a roughly exponential decay

of the polarization. The time constants are about a

factor of four larger than the ones obtained from the
rotating-frame measurements, as expected from Eq.

(24). The source of the additional oscillations on the

laboratory-frame measurements is not fully understood.

The measured rate constants, kI, are kI ¼ 265s�1 for

mr ¼ 30 kHz, kI ¼ 360s�1 for mr ¼ 25 kHz, kI ¼ 540s�1

for mr ¼ 20 kHz, kI ¼ 920s�1 for mr ¼ 15 kHz, and kI ¼
1400s�1 for mr ¼ 10 kHz. Fig. 18 shows the measured

Fig. 15. Simulated powder line shapes for a two-spin system as a

function of the proton spin-diffusion rate constant kI (figure adapted

from [21]).

Fig. 16. Pulse sequence to measure the proton rotating-frame, spin-

diffusion rate constant. The second and third cross-polarization time

was chosen short to obtain polarization transfer across the one-bond

dipolar coupling only. To measure the laboratory-frame spin diffusion

rate constant, the spin-lock period (SL) is replaced by a pair of 90�
pulses.
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spin-diffusion rate constants as a function of the spin-

ning frequency. As expected, the rate constants corre-

sponding to spinning frequencies in the range between

10 and 30 kHz are approximately proportional to the

inverse of the spinning frequency as predicted by Eqs.
(24) and (30). These rate constants can be used to sim-

ulate cw-decoupled spectra of alanine and to compare

the simulations with experimental data.

Fig. 19a shows 13C spectra of [2-13C]alanine at spin-

ning frequencies ranging from 10 to 30 kHz measured at

a proton resonance frequency of 600 MHz and with a cw

decoupling field strength of x1=ð2pÞ ¼ 100 kHz. It can

clearly be seen that the linewidth of the line increases
with increasing spinning frequency. Such a spinning-

frequency dependent line broadening has been observed

experimentally before at lower spinning frequencies

[26,27] in samples with partially averaged dipolar cou-

plings. At lower spinning frequencies the line shape

appears to be described quite well by a mixed Gaussian/

Lorentzian line while at higher spinning frequencies the

line shape becomes more complicated and seems to have
several components. The simulated spectra in Fig. 19b

were obtained using the measured proton spin-diffusion

rate constants and assuming a one-bond C–H dipolar

coupling and an axially symmetric proton chemical-

shielding tensor of Dr ¼ 4 ppm. The agreement between

the simulated and the measured spectra is quite good,

keeping in mind that there was only a single adjustable

parameter for the set of simulations, namely the chem-

Fig. 18. Measured rotating-frame, spin-diffusion rate constants in 8%

labeled [2-13C]alanine as a function of the MAS frequency.

Fig. 17. Decay of localized proton magnetization in 8% labeled

[2-13C]alanine. (a) shows the decay in the rotating frame while (b)

shows the decay in the laboratory frame for five different MAS fre-

quencies.

Fig. 19. (a) Measured spectra of [2-13C]alanine using a cw decoupling

field strength of x1=ð2pÞ ¼ 100 kHz at different spinning frequencies

between mr ¼ 10 kHz and 30 kHz at a proton resonance frequency of

600MHz. The simulated spectra in (b) use the measured spin-diffusion

rate constants, kI, and assume a one-bond C–H dipolar coupling

(figure adapted from [21]).
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ical-shielding tensor of the protons. This indicates that
the model of Section 3.1 provides a good theoretical

framework for the description of strongly coupled spin

systems under high-power cw irradiation.

4. Low-power cw decoupling

4.1. Theory

As already mentioned earlier, in the case of low-

power cw decoupling [49] the order of the averaging

processes is reversed compared to high-power cw de-

coupling under MAS. The rotation of the sample about

the magic angle is now the faster of the two averaging

processes (see Fig. 3b). The MAS time-averaged Ham-

iltonian can be calculated from the time-dependent
Hamiltonian of Eq. (1) using average Hamiltonian the-

ory [17]. If the spinning frequency approaches infinity,

the zeroth-order average Hamiltonian provides an exact

description of the time evolution of the spin system. The

Hamiltonian is then given by

H
ð0Þ ¼ 1

sr

Z sr

0

dtHðtÞ

¼ HCS
S þHCS

I þHJ
II þHJ

SI þHrf
I : ð27Þ

This Hamiltonian contains only the first four terms of

Eq. (1) and the RF irradiation. The Hamiltonian of Eq.

(27) is the usual liquid-state NMR Hamiltonian.
For finite MAS frequencies, we have to consider

higher-order terms in the average Hamiltonian expan-

sion. The first-order average Hamiltonian is given by

H
ð1Þ ¼ �i

2sr

Z sr

0

dt2

Z t2

0

dt1 ½Hðt2Þ;Hðt1Þ�: ð28Þ

Analyzing the commutators in Eq. (28) is straightfor-

ward and leads, in the absence of RF irradia-

tion(Hrf
I ¼ 0), to only three non-vanishing terms: (i) the

cross-term between the homonuclear dipolar coupling of
the I-spins with the CSA tensor of the I-spins

H
ð1Þ
a ¼ 1

xr

X
k<‘

�xxk‘ð2IkxI‘y � 2IkyI‘xÞ; ð29Þ

(ii) the cross-term of the homonuclear dipolar coupling
of the I-spins with itself

H
ð1Þ
b ¼ 1

xr

X
n6¼k;‘
k<‘

�xxnk‘ð4InzIkxI‘y � 4InzIkyI‘xÞ; ð30Þ

and (iii) the cross-term between the homonuclear dipolar

coupling of the I-spins and the heteronuclear dipolar

coupling

H
ð1Þ
c ¼ 1

xr

X
k<‘

�xxSk‘ð4SzIkxI‘y � 4SzIkyI‘xÞ: ð31Þ

This term leads to a direct broadening of the S-spin res-
onances since it has the form of a generalized coupling

between the S- and the I-spins. The effective coupling

frequencies �xxSk‘ can be calculated from the commutators

of Eq. (28) and are given explicitly in Appendix B.

The first two contributions act only indirectly on the

S-spin resonances by propagating spin diffusion among

the I-spins [21,22]. We assume that the MAS spinning

frequency is high enough that we can neglect terms
that depend on ð1=xrÞ2 and higher powers in the av-

erage Hamiltonian expansion. This assumption is ful-

filled to a good approximation for spinning frequencies

larger than 10 kHz as can be seen from the good fit of

the expected 1=xr dependence of the linewidth to the

measured linewidths in undecoupled spectra of a CH

and CH2 group (see Fig. 2).

Based on the three terms of Eqs. (29)–(31), which
form the first-order average Hamiltonian, two potential

sources for the residual linewidth under high-frequency

MAS without proton irradiation become apparent: (i)

The spin diffusion among the I-spins mediated by the

Hamiltonians of Eqs. (29) and (30) can lead to an ‘‘ex-

change-type’’ narrowing or broadening of the J-multi-

plet [21,22]. (ii) The generalized heteronuclear coupling

terms of Eq. (31) can lead to a direct broadening of the
S-spin resonances.

We can estimate the maximum contribution to the

residual linewidth generated by spin diffusion acting on

a heteronuclear J-splitting. Fig. 20 shows carbon spectra

simulated for a J-coupled CH two-spin system where the

spin diffusion among the protons is included in the

simulation using the model presented in Section 3.1 and

Fig. 20. Simulation of an isolated dipolar-coupled CH two-spin

system with a J-coupling of 130Hz under MAS. The coupling of the

two-spin system to the proton bath was described by a relaxation

superoperator. The parameter kI which was varied in the simulations

is a measure for the coupling strength in the proton bath (figure

adapted from [49]).
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[21]. The J-coupling was set to 130 Hz, a typical value
for a CH group. The strength of the coupling in the I-

spin bath was varied. The maximum linewidth obtained

was about 90 Hz FWHH at a value of kI ¼ 500s�1. This

clearly indicates that at the spinning frequencies con-

sidered here a major source for the residual linewidth is

the cross-term between the homonuclear and the het-

eronuclear dipolar couplings (Eq. (31)) in the first-order

average Hamiltonian.
Adding the cw RF-irradiation term (Hrf ¼

P
k x1Ikx)

to the Hamiltonian leads to three additional important

terms in the first-order average Hamiltonian of Eq. (28).

These three terms are (i) the cross-term between the RF

irradiation and the chemical-shielding tensor of the I-

spins

H
ð1Þ
d ¼ x1

xr

X
k

�xxrf
k Iky ; ð32Þ

(ii) the cross-term between the RF irradiation and the

heteronuclear dipolar-coupling tensor

H
ð1Þ
e ¼ x1

xr

X
k

�xxrf
Sk2SzIky ; ð33Þ

and (iii) the cross-term between the RF irradiation and

the homonuclear dipolar-coupling tensor

H
ð1Þ
f ¼ x1

xr

X
k<‘

�xxrf
k‘ð2IkyI‘z þ 2IkzI‘yÞ: ð34Þ

The averaged constants, �xxrf
k , �xxrf

Sk, and �xxrf
k‘ can be cal-

culated from the commutators of Eq. (28) and are given

in Appendix B.

Assuming that the RF-irradiation field strength

is much lower than the spinning frequency but consid-

erably larger than the residual dipolar coupling after

averaging by MAS we can now transform the MAS-

averaged Hamiltonian into a interaction frame quan-

tized along the RF field and perform a second averaging
step. The total Hamiltonian before this second averag-

ing step is given by

H ¼ H
ð0Þ þH

ð1Þ
a þH

ð1Þ
b þH

ð1Þ
c þH

ð1Þ
d þH

ð1Þ
e

þH
ð1Þ
f : ð35Þ

If we only consider zeroth-order average Hamiltonian

terms in this interaction frame by the cw RF field we
obtain a Hamiltonian

H
ð0Þ

¼ HCS
S þHJ

II þ
1

2xr

X
n6¼k;‘
k<‘

�xx0
nk‘

� ð4InxIkyI‘z � 4InxIkzI‘yÞ; ð36Þ

which contains only the isotropic chemical shift of the S-

spins, the homonuclear J-coupling of the I-spins, and a

term originating from the homonuclear dipolar cou-
plings of the I-spins. The last term of Eq. (36) promotes

spin diffusion among the I-spins and has a similar

structure to the one found when employing high-power

cw decoupling [22] (see also Eq. (24)). The constant �xx0
nk‘

can be calculated from the interaction-frame transfor-

mation and is given in Appendix B.

The system is only described to a good approxima-

tion by the Hamiltonian of Eq. (36) if the RF field is
considerably larger than the I-spin terms in H. Espe-

cially critical are the isotropic chemical-shift offsets of

the I-spins, the heteronuclear J-coupling, and the first-

order terms involving RF irradiation. On the other

hand, the consecutive averaging approach is only valid if

the RF field is considerably smaller than the spinning

frequency. Therefore we expect the best results at high

spinning frequencies since this will lead to smaller terms
in H

ð1Þ
and, at the same time, allows the use of higher

‘‘low-power’’ decoupling fields without interference ef-

fects from the sample spinning.

If we assume that xr ¼ px1, we obtain the following

first-order average Hamiltonian where only terms linear

in 1=xr and involving the S-spin operators are shown:

H
ð1Þ

¼
X
k

pxiso
k pJSk

xr

 
þ �xxrf

Sk �xx
rf
k

pxr

!
2SzIkz

þ
X
k<‘

pJk‘ð �xxrf
S‘ � �xxrf

SkÞ
xr

ð4SzIkxI‘y � 4SzIkyIlxÞ:

ð37Þ

It is interesting to note that again the cross-terms be-

tween the chemical-shielding tensor of the I-spins and

the heteronuclear dipolar-coupling tensor dominates the

first-order average Hamiltonian as was found in the case

of high-power decoupling.

We can also calculate the average Hamiltonian by
simultaneously averaging over the rotation of the spin

part and the space part of the Hamiltonian assuming

that the ratio between the RF-irradiation field strength

and the spinning frequency is an integer. The zeroth-

order average Hamiltonian is given as

H
ð0Þ ¼ HCS

S þHJ
II; ð38Þ

assuming that p > 2, i.e., no recoupling condition (e.g.,

HORROR condition at x1 ¼ xr=2) is matched. The
first-order average Hamiltonian for a ratio xr ¼ px1,

where p is an integer, is given by:

H
ð1Þ ¼

X
k

pxiso
k pJSk

xr

�

þ p � 4p3

1 � 5p2 þ 4p4

xþ1
Sk x�1

k þ x�1
Sk xþ1

k

xr

þ p � p3

1 � 5p2 þ 4p4

xþ2
Sk x�2

k þ x�2
Sk xþ2

k

xr

�
2SzIkx: ð39Þ
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Only terms involving S-spin operators are shown for
simplicity. For large values of p we can simplify Eq. (39)

and obtain:

H
ð1Þ ¼

X
k

pxiso
k pJSk

xr

�
X2

m¼�2
m6¼0

xþm
Sk x�m

k

m2pxr

2
664

3
7752SzIkx; ð40Þ

which contains similar terms as one obtains from the

sequential averaging approach in Eq. (37). One has to
keep in mind that for large values of p the cycle time of

the average Hamiltonian calculation becomes quite long

and the question of the convergence of the average

Hamiltonian approach has to be considered.

It is interesting to compare this average Hamiltonian

to the case of high-power cw irradiation as shown in

Eq. (18). Exactly the same terms dominate the residual

linewidth, and only the weighting prefactors, which
depend on the ratio p between the spinning frequency

and the RF-field strength, have a different functional

form.

There are two possible ways to further decrease the

linewidth using the low-power RF-irradiation approach.

One can further increase the MAS frequency and,

thereby, reduce the size of the first-order terms in Eqs.

(39) and (40). Increasing the spinning frequency will also
allow the use of higher RF-irradiation fields which will

decrease the size of the first-order average Hamiltonian

even more. The second approach would be the design of

multiple-pulse sequences which reduce the size of the

first-order terms. Here one has to avoid recoupling

conditions which could, potentially, lead to an un-

wanted broadening of the lines.

4.2. Numerical simulations

Numerical simulations of low-power cw decoupling

suffer from the same problems as numerical simulation

of high-power cw decoupling. Simulating a small spin

system does not reflect the reality of a strongly coupled

proton system and one has to find ways to incorporate

the effect of strong proton couplings into a small co-
herently simulated spin system.

Nevertheless, numerical simulations in small spin

systems can be used to illustrate the fact that the cross-

term between the chemical-shielding tensor and the

heteronuclear dipolar-coupling tensor is indeed the

dominant contribution to the residual linewidth for low-

power cw decoupling. Fig. 21 shows the maximum line

intensity for a three-spin simulation in a C–H–H system
at an MAS spinning frequency of 50 kHz as a function of

the RF-field strength. The spin system consists of a di-

polar coupled CH pair with dCH=ð2pÞ ¼ 46 kHz and an

additional proton which is dipolar coupled to the first

proton only (dCH=ð2pÞ ¼ 40 kHz). Without proton irra-

diation the linewidth is, as expected from Eq. (31),

dominated by the presence of a large homonuclear di-

polar coupling. Setting the homonuclear dipolar cou-

pling to zero (and keeping the RF irradiation off) leads to

an intensity of one independent of the size of the proton

CSA tensor. For the whole range of RF-field strengths,

the addition of a CSA tensor to the proton which is
coupled to the carbon (dH=ð2pÞ ¼ 3 kHz, gH ¼ 0, coaxial

with the dipolar coupling) leads to a significant reduction

in the maximum line intensity. This is in good agreement

with Eqs. (17) and (39) which predict that the cross-term

between the chemical-shielding tensor and the hetero-

nuclear dipolar-coupling tensor dominates the residual

linewidth for both high- and low-power cw decouplings.

The simulations without the CSA tensor show almost
perfect decoupling, i.e., an intensity close to one, over the

whole range of RF-field strengths except when the

n ¼ 1; 2; 3, or four rotary-resonance conditions (x1 ¼
nxr) [12–15] are matched. One can also see that matching

the HORROR condition (x1 ¼ xr=2) in the case of a

non-negligible CSA tensor leads to an increased line in-

tensity due to a recoupling of the homonuclear dipolar

coupling.

4.3. Experimental results and discussion

All experiments presented in this section were carried

out on a Bruker DMX-500 spectrometer equipped with

a 1.8-mm o.d. double-resonance MAS probe capable of

spinning up to 50 kHz [48]. In order to accurately cali-

brate the decoupler field strengths, the amplitude of the
RF-pulses was measured by attenuating the output of

Fig. 21. Maximum peak intensity of a simulated three-spin system

under MAS rotation (mr ¼ 50 kHz) as a function of the RF-field

strength. The crosses (�) indicate the values for simulations without a

CSA tensor on the protons, the squares (�) indicate values for simu-

lations including a CSA tensor on the proton coupled to the carbon

(dH=ð2pÞ ¼ 3 kHz, gH ¼ 0, coaxial with the dipolar coupling).
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the amplifier and feeding it into the receiver of the NMR
system. The obtained voltage is a measure of the RF-

field strength. The calibration of the voltage in terms of

frequency units was then carried out by measuring the

nutation frequency at a few selected power levels

(Fig. 22).

To evaluate the decoupling performance as a func-

tion of the RF-field strength at different spinning fre-

quencies, experiments were performed on 8% labeled
[2-13C]alanine (Fig. 23) and on 5% labeled [2-13C]gly-

cine (Fig. 25). Enriched samples were used to enhance

the rate of data collection. The degree of labeling used

in the experiments does not influence the results pre-

sented here. The alanine sample was used to charac-

terize the behavior of a CH group while the glycine

sample was used to characterize a CH2 group. The

spinning frequency was varied between 20 and 50 kHz
and the RF-field strength was varied between 1 and

215 kHz in steps of 0.1 dB. For each spinning frequency

and decoupling field strength a 1D 13C spectrum was

recorded, and the linewidth and the line intensity were

obtained by fitting the FID with a single mixed Lo-

rentzian/Gaussian line. The assumption of such a line

shape proved to be good. The value for the full width

at half height (FWHH) was obtained by fitting the FID
and extracting the numerical values for the FWHH

from the best fit.

Fig. 23 shows the linewidth of the 13C line in alanine

(FWHH) in a cw decoupling experiment as a function of

the ratio of the decoupler field strength and the spinning

frequency for the four spinning frequencies mr ¼ 20, 30,

40, and 50 kHz. It can clearly be seen that the line be-

comes broad around the well-known rotary-resonance
conditions nmr ¼ m1 with n ¼ 1; 2 [13,14] where the het-

eronuclear dipolar coupling is recoupled due to the

interference between the spinning frequency and the

RF-field strength. As expected, weak rotary-resonance

recoupling for n > 2 is also observed. The HORROR

recoupling condition [16] at 1
2
mr ¼ m1 is not observed in

these measurements because HORROR recouples only
the homonuclear dipolar couplings, which do not sig-

nificantly influence the linewidth of the 13C line.

At the highest decoupling field strength (m1 ¼ 215

kHz, last data point in all measurements) we find that

the linewidth increases significantly with increasing

spinning frequency as expected [27]. This increase in

linewidth is due to the closer proximity to the n ¼ 2

rotary-resonance condition and to the reduction of the
effective homonuclear dipolar coupling among the pro-

tons at higher spinning frequencies. The reduced pro-

ton–proton coupling strength leads to a quenching of

the spin diffusion and thus to a reduced ‘‘self-decou-

pling’’ [21,23–25] of the residual line broadening after

cw decoupling [30]. At 20 kHz MAS spinning frequency

the linewidth obtained at 215 kHz decoupling field

strength is about 40 Hz while at 50 kHz MAS the re-
sidual linewidth is above 60 Hz.

If we look at decoupling field strengths below the

n ¼ 1 rotary-resonance condition, we find that at the

higher spinning frequencies it is possible to achieve

reasonably good decoupling. At 20 kHz MAS the nar-

rowest linewidth obtained is 300 Hz FWHH at a de-

coupling field strength of about 5 kHz. At 30 kHz MAS

the linewidth is reduced to 70 Hz at a decoupling field
strength of 8.5 kHz, and at 40 kHz the linewidth is only

about 50 Hz at an RF-field strength of 10 kHz. Under

these conditions, the line is already narrower than the

one obtained with a cw decoupling field of 215 kHz at

the same spinning frequency. At 50 kHz MAS the nar-

rowest linewidth of about 40 Hz is obtained at a field

strength of 21 kHz. This width is quite close to the

minimum of 35 Hz obtained in this sample using TPPM
decoupling at 45 kHz MAS and an RF-field strength of

215 kHz (Fig. 24c).

To give an impression of the quality of the spectra,

some low-power decoupled spectra for the four MAS

spinning frequencies are shown in Fig. 24b. The de-

coupling power was set to the value in the interval from

0 to 1/2 the spinning frequency that gives the lowest

linewidth in Fig. 23. Fig. 24a shows the spectra at the
same MAS frequencies for high-power decoupling

(m1 ¼ 215 kHz), and Fig. 24c shows an optimized

TPPM-decoupled spectrum at an MAS frequency of

45 kHz and an RF-field strength of 215 kHz. All spectra

are shown on the same scale to allow direct comparison

of line intensity and linewidth.

Fig. 25 shows the dependence of the linewidth on the

RF-field strength in cw-decoupled spectra for a CH2

group in [2-13C]glycine. In principle, the same features

as in the CH group are observed, but the overall line-

width is increased significantly. This illustrates the well-

known fact that CH2 groups are generally more difficult

to decouple than CH groups due to the strong homo-

nuclear dipolar coupling of about dHH ¼ 40 kHz. The

higher-order rotary-resonance conditions are much
Fig. 22. RF-field strength calculated from the measured voltage as a

function of the power-level setting of the spectrometer.
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more pronounced than in the measurement of the CH

group (Fig. 23). The narrowest lines for low-power de-

coupling are found to be about 60 Hz FWHH. They are

obtained at 50 kHz MAS frequency and a decoupling

field strength of about 11 kHz. This width is about 20%

larger than the 50 Hz obtained in this sample using

TPPM decoupling at 215 kHz with 45 kHz MAS (Fig.

26c). Fig. 26 shows again the best low-power cw-de-
coupled spectra (Fig. 26b) in comparison with the best

high-power cw-decoupled spectra (Fig. 26a) to allow

direct comparison of the line intensities and the line-

widths obtained by the different methods. For higher

MAS spinning frequencies, low-power cw decoupling is

again superior to high-power cw decoupling, but the

narrowest lines are still obtained using optimized TPPM
decoupling.

The bandwidth of cw decoupling at low RF-field

strengths is, of course, limited and an accurate setting of

the RF-irradiation frequency is important. Simple off-

set-compensating composite pulse sequences such as

WALTZ-4 [6,7] gave only very small improvements in

the bandwidth compared to cw irradiation. Since the

dominant term for the residual linewidth under low-
power decoupling (Eq. (37)) has the same structure as

the one under high-power decoupling (Eq. (18)), one can

expect that further improvements in low-power decou-

pling are possible by using pulse sequences that reduce

the size of the first-order average Hamiltonian term.

To illustrate the performance of the decoupling with

low-power cw irradiation in a larger molecule, tests were

performed on a sample of a fully 13C and 15N labeled
cyclic decapeptide, antamanide, which can be crystal-

lized to yield quite narrow lines [68]. Fig. 27 shows

spectra of antamanide (a) at 50 kHz and (b) at 30 kHz

MAS frequencies. At 50 kHz MAS frequency (Fig. 27a)

low-power cw decoupling shows a significant improve-

ment over high-power cw decoupling using an RF-field

strength of 185 kHz. It is, however, also obvious that

optimized TPPM decoupling can reduce the linewidth
even further. In the chemical-shift range of the a-car-

bons (approximately 51–62 ppm) the differences between

the 10 kHz cw-decoupled spectrum and the TPPM-de-

coupled spectra are relatively small, and similar line-

widths are obtained in both spectra. The same is true for

the proline-d region (ca. 46–48 ppm). This agrees well

with the results obtained for the CH group in alanine

(Fig. 24) where low-power cw decoupling reached al-
most the linewidth obtained by TPPM decoupling. In

the area of the CH3-groups (ca. 17–20 ppm) there are

Fig. 24. (a) High-power decoupled spectra obtained with a cw-decoupling field strength of 215 kHz; (b) optimized low-power cw-decoupled spectra of

[2-13C]alanine (CH) at four spinning frequencies; (c) optimized TPPM-decoupled spectrum at 45 kHz MAS frequency.

Fig. 23. 13C linewidth (FWHH) in 8% labeled [2-13C]alanine at MAS

frequencies of 20, 30, 40, and 50 kHz as a function of the decoupler

field strength scaled by the MAS frequency.
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only small differences. However, we find considerably

narrower lines in the TPPM-decoupled spectrum in the
area of the CH2-groups (ca. 20–40 ppm), which agrees

with what was in the measurements on the CH2-group in

glycine (Fig. 26).

At 30 kHz MAS spinning frequency (Fig. 27b) low-

power cw decoupling performs significantly worse over

the whole range of chemical-shift values than either

cw decoupling with an RF field strength of 185 kHz

or TPPM decoupling. This also agrees with what
one would expect based on the results on alanine and

glycine.

As a rule of thumb, low-power decoupling becomes

an interesting alternative to high-power decoupling for

spinning frequencies larger than 40 kHz. The RF-field

strength should be about 1/4 of the spinning frequency.

At spinning frequencies larger than 50 kHz the RF-field

strength can also be set to about 2/5 of the spinning
frequency (see Fig. 23).

5. Multiple-pulse decoupling under MAS

5.1. General considerations

The residual line broadening in cw-decoupled spectra
is dominated by the first-order average Hamiltonian

term, which consists of a cross-term between the

chemical-shielding tensor of the protons and the het-

eronuclear dipolar-coupling tensor as can be seen from

Eqs. (10), (17), and (39) for the cases of low and high

RF-field amplitudes. In principle, one can use a sym-

metric pulse sequence [1] to ensure that all odd orders of

the average Hamiltonian are zero. A symmetric pulse
sequence in this context means that in the toggling

frame, the condition

~HHðtÞ ¼ ~HHðsc � tÞ ð41Þ
is fulfilled. In static samples, this condition can easily

be fulfilled by a simple phase-alternating pulse sequence

of the form ð360�þx; 360��xÞ. There are many more
pulse sequences in liquid state NMR which are sym-

metric and remove the first-order average Hamiltonian

[1,17].

In rotating samples it is more complicated to fulfill

this condition since one has not only the time depen-

dence due to the toggling frame but also the time de-

pendence due to the MAS sample rotation. One way to

fulfill the condition of Eq. (41) is by reversing both the
rotation of the sample and the phase of the RF irradi-

ation in the center of the pulse sequence. Reversing the

sample rotation is technically possible [69] but requires

too much time to be practical in this context.

Fig. 26. (a) High-power decoupled spectra obtained with a cw-decoupling field strength of 215 kHz; (b) optimized low-power cw-decoupled spectra of

[2-13C]glycine (CH2) at four spinning frequencies; (c) optimized TPPM-decoupled spectrum at 45 kHz MAS frequency.

Fig. 25. 13C linewidth (FWHH) in 5% labeled [2-13C]glycine at MAS

frequencies of 20, 30, 40, and 50 kHz as a function of the decoupler

field strength scaled by the MAS spinning frequency.
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Introducing a multiple-pulse sequence on top of
magic-angle sample spinning creates additional possi-

bilities for recoupling conditions. Now we can have in-

terference not only between the sample spinning and the

RF-field amplitude but also with the frequencies con-

tained in the multiple-pulse sequence. So far there are

only three multiple-pulse decoupling sequences under

MAS which give improved results over a large range of

parameters, namely TPPM decoupling [20], C12�1
2 de-

coupling [46], and XiX [47] decoupling.

5.2. TPPM decoupling

Two-pulse phase-modulated decoupling [20] consists

of pulses with a flip angle bp and alternating phases

�u=2. The optimum value for the flip angle is typically

near 180�. The optimum value of the phase, u, can vary
over quite a large range and is usually between 10� and

50�. Both the flip angle and the phase vary as a function

of the spinning speed, the spectrometer, the probe, and

the sample. There are some variations of the TPPM

sequence (see Section 1.3) but none of them offers sig-

nificant improvements in rigid solids over a large range

of experimental parameters [41–45].

Keeping in mind the remarks about possible inter-
ference effects between a multiple-pulse sequence and

the sample rotation, we can try to understand the effects

of TPPM decoupling by first calculating the effects on a

static sample. Using the following idealized TPPM pulse

sequence ð180�þu=2; 180��u=2ÞN with u ¼ p=N , we obtain

a pulse sequence which is cyclic in the average Hamil-

tonian sense, and we can calculate the first two orders of

the average Hamiltonian. The zeroth-order average
Hamiltonian is the same as for cw decoupling (Eq. (16))

while the first-order average Hamiltonians for N > 1 is

given by [30]

H
ð1Þ ¼ 2 tanðu=2Þ

p
ðxSIðtÞ þ pJSIÞ2 þ ðxiso

I þ xIðtÞÞ2

2x1

Ix

"

þ ðxSIðtÞ þ pJSIÞðxiso
I þ xIðtÞÞ

x1

2SzIx

�
: ð42Þ

Comparing the result of Eq. (42) with the equivalent

result for cw decoupling (Eqs. (10) and (18)) shows that

the residual second-order term obtained under the

TPPM sequence is by a factor of 2 tanðu=2Þ=p � u=p
smaller than for cw decoupling. For u ¼ 40� this is

about 0.23 or more than a factor of four in reduction of

the second-order recoupling contribution to the residual

line broadening. However, one has to be careful in in-
terpreting this result. For smaller phase angles, u, the

residual coupling term becomes smaller, but at the same

time the cycle time of the sequence gets longer, neces-

sitating consideration of the convergence of the average

Hamiltonian treatment. Eq. (42) does not reflect the

experimental experience (vide infra) that one usually

obtains distinct points in the two-dimensional parameter

space where TPPM decoupling performs particularly
well.

TPPM decoupling can also be explained in the con-

text of the symmetry considerations of the so-called

class of helical R sequences [40], where a simultaneous

averaging over the MAS rotation and the spin rotations

is considered. Assuming again an idealized TPPM pulse

sequence (180�þu=2; 180��u=2), the TPPM decoupling

sequence corresponds to an R241
2 sequence for u ¼ 15�

and x1 ¼ 6xr or to an R242
2 sequence for u ¼ 30� and

x1 ¼ 6xr. A detailed symmetry analysis shows that the

number of cross-terms between the chemical-shielding

tensor of the I-spins and the heteronuclear dipolar

coupling is reduced compared to cw decoupling. At the

same time the number of cross-terms between the ho-

monuclear dipolar couplings of the I-spins is increased

which increases the spin-diffusion process among the I-
spins [40]. However, the symmetry considerations give

only qualitative answers about the size of the different

terms in zeroth-order and first-order average Hamilto-

nian theory. In addition, such an approach cannot

explain why TPPM decoupling works quite well over a

Fig. 27. 13C spectra of the cyclic decapeptide, antamanide, obtained at

MAS frequencies of (a) 50 kHz and (b) 30 kHz using various decou-

pling schemes (figure adapted from [49]).
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large range of RF-field amplitudes and does not require
a synchronization of RF-field and MAS.

It is not clear how the proton spin-diffusion rate

constant under TPPM decoupling and MAS compares

to the one under cw decoupling and MAS as measured

in Section 3.3. There is no simple way of measuring the

proton spin-diffusion rate constant under TPPM irra-

diation. It has been claimed that some of the im-
provements of TPPM decoupling are due to a

recoupling of the proton homonuclear couplings and,

therefore, an increase in the proton spin-diffusion rate

constant [40]. Despite this uncertainty in the size of the

proton spin-diffusion rate constant, one can try to

simulate TPPM decoupling in the framework of the

spin-diffusion model (see Section 3.1) assuming that the

spin-diffusion rate constant, kI, is of the same order of
magnitude as the one measured under cw decoupling.

A comparison between measurements and simulations

(see Fig. 28) shows quite good agreement. However,

this result does not allow us to draw any conclusions

about the size of the proton spin-diffusion rate con-

stant because the simulations result in a relatively

narrow line over a large range of values for the pa-

rameter kI [21].
The influence of the parameter kI on the performance

of TPPM decoupling can be better judged from looking

at full two-dimensional TPPM decoupling surfaces. Fig.

29 shows a contour plot of the maximum line intensity

for the CH group in [2-13C]alanine as a function of the

pulse length (sp) and the phase angle (u) for the TPPM

decoupling sequence s�u=2sþu=2. Higher peak intensity

(darker areas in Fig. 29) indicates better decoupling. The
measurements (Fig. 29a) were done at a proton reso-

nance frequency of 300 MHz and at a spinning fre-

quency of mr ¼ 28 kHz. The contour plot shows a

relatively broad maximum for sp � 5ls (corresponding

to a 180� pulse at a field strength of x1=ð2pÞ ¼ 100 kHz)

and u � 40�. Considering the simplicity of the model,

the general features of the experimentally measured

contour plot are well represented in the simulation (Fig.
29b), which shows that the model is able to describe the

spin system in a realistic way over a large range of pa-

rameters. The simulations also reflect the various reso-

nance conditions, which are indicated by bands of low

Fig. 28. (a) Measured spectra of [2-13C]alanine using a TPPM decou-

pling field strength of x1=ð2pÞ ¼ 100 kHz at different spinning fre-

quencies between mr ¼ 10 kHz and 30kHz at a proton resonance

frequency of 600MHz. The phase angle, u, was set to 30�, and the

pulse length was optimized. The simulated spectra in (b) use the

measured spin-diffusion rate constants, kI, under cw irradiation at

the five spinning frequencies and assume a one-bond C–H dipolar

coupling. At all spinning frequencies, measurements and simulations

result in a relatively sharp line (figure adapted from [21]).

Fig. 29. (a) Two-dimensional contour plot showing the line intensity of the C-H group of alanine as a function of the pulse length (sp) and the phase

angle (u) for a TPPM decoupling sequence s�u=2sþu=2. Higher intensity indicates narrower lines and therefore better decoupling. (b) Simulated

contour plot assuming a proton spin-diffusion rate constant of kI ¼ 500s�1 (figure adapted from [21]).
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intensity in both the simulated and the experimental
data.

A similar comparison is shown in Fig. 30 for the N–H

group in [d9]-trimethyl-15N-ammonium chloride where

the rate constant kI ¼ 0s�1 was assumed, i.e., a fully

isolated two-spin system. Both the simulated and the

measured two-dimensional intensity plots are much less

smooth than in the case of the strongly coupled proton

system. The areas of good decoupling are much nar-
rower and occur for well-defined combinations of pulse

lengths and phase angles. Again, the agreement between

simulation and experiment is quite good considering the

simplicity of the model.

The quality of TPPM decoupling depends on two

parameters: (i) the phase angle, u, and (ii) the pulse

length, sp, or more precisely the flip angle, bp ¼ �x1sp.

The optimum values for the two parameters are not easy
to predict. It is, therefore, required that one optimize

both parameters under the desired experimental condi-

tions in order to obtain the best decoupling results. The

dependence of the efficiency of TPPM decoupling on the

flip angle, bp, leads, especially at fast MAS spinning

frequencies, to a high sensitivity to RF-field inhomoge-

neities (vide infra). This can also be seen from Fig. 30,

which shows a very narrow optimum condition in the
flip-angle dimension.

5.3. C12�1
2 decoupling

The C12�1
2 decoupling pulse sequence consists of

twelve 2p pulses where the phase of the RF is incre-

mented by D/ ¼ �30� after each pulse. The RF-field

strength is x1 ¼ 6xr, i.e., the twelve 2p pulses span two
rotor periods [46]. The decoupling performance of the

C12�1
2 sequence is comparable to the decoupling per-

formance of TPPM at the same RF-field strength [40].

At higher spinning frequencies the synchronization

condition x1 ¼ 6xr leads to high RF-field amplitude
which makes the C12�1

2 sequence less desirable under

such conditions. Fig. 31 shows the line height of the CH2

group in fully 13C-labeled sodium propionate under

C12�1
2 decoupling as a function of the pulse length sp

and the RF-field strength x1. The spinning frequency

was set to xr=ð2pÞ ¼ 22 kHz leading to theoretical val-

ues of x1=ð2pÞ ¼ 132 kHz and sp ¼ 7:58ls which are

marked by a �*� in Fig. 31. It is interesting to note that
adjusting the flip angle exactly to a 2p rotation is more

important than the precise synchronization condition

x1 ¼ 6xr. This can be seen from the fact that the line

height along the condition 2p=x1 ¼ sp is larger than

90% of the maximum line height in the range

5:4xr < x1 < 6:6xr. Such an insensitivity to the rotor

synchronization cannot be understood in the framework

of C-type pulse sequences [46]. Fig. 32 shows the de-
pendence of the decoupling quality on the phase incre-

ment D/ between two successive 2p pulses. The

experimental maximum of the line height is not at the

theoretical value of 30� but closer to D/ ¼ 25�. This

would correspond to a C72�5
12 decoupling sequence.

5.4. XiX decoupling

The main disadvantage of TPPM decoupling is the

fact that the parameters for optimum decoupling cannot

be predicted easily and have to be determined experi-

mentally each time. Such an experimental two-dimen-

sional parameter optimization is time consuming and

only possible for samples with a high signal-to-noise ra-

tio. A decoupling sequence with only a single variable

parameter would, therefore, have advantages especially if
the position of the performance optimum could be pre-

dicted theoretically and would be independent of as many

experimental parameters as possible. The simplest such

sequence would be a phase-alternating sequence

Fig. 30. (a) Two-dimensional contour plot showing the line intensity of the N–H group of [d9]-trimethyl-15N-ammonium chloride as a function of the

pulse length (spm) and the phase angle (u) for a TPPM decoupling sequence s�u=2sþu=2. Higher intensity indicates narrower lines and therefore better

decoupling. (b) Simulated contour plot assuming a proton spin-diffusion rate constant of kI ¼ 0s�1 and dNH=ð2pÞ ¼ 22 kHz.
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ðhþx; h�xÞN which has only one parameter, namely the

pulse length sp. The use of such a decoupling sequence

under MAS has been proposed earlier for special situa-
tions, i.e., low RF fields and relatively slow MAS [26] and

weakly coupled proton systems [30]. However, in both

publications the properties of such a sequence were not

analyzed and the importance of the modulation-fre-
quency to spinning-frequency ratio was not recognized.

5.4.1. Theory and numerical simulations

We assume a general pulse sequence of the form

ðhþx; h�xÞN that spans n rotor cycles. The length of a

single pulse is then given by sp ¼ nsr=ð2NÞ ¼ pn=ðNxrÞ,
and the RF-field strength is assumed to be x1 ¼ pxr.

Such a sequence is cyclic in the average Hamiltonian
sense [1], permitting us to calculate the zeroth-order

average Hamiltonian for the general sequence. Assum-

ing that the pulse length is not a multiple of a quarter of

a rotor period, we obtain:

H
ð0Þ ¼ xSSz þ

X
k

Nxk

npp
sin

npp
N

� �
Ikz

�

þ cos
npp
N

� �
� 1

h i
Iky

�
þ
X
k

NpJSk

npp
sin

npp
N

� �
2SzIkz

�

þ cos
npp
N

� �h
� 1
i
2SzIky

�
: ð43Þ

This shows that to zeroth-order average Hamiltonian

theory the heteronuclear dipolar coupling and the I-spin

chemical-shielding tensors are fully averaged out while
the isotropic heteronuclear J-coupling and the isotropic

chemical shift of the I-spins are scaled. If the pulse

length equals an integer multiple of a quarter of the

rotor period, we obtain additional recoupled dipolar

(and CSA) terms which have the general form

Fig. 31. Line height of the CH2 group in sodium propionate under

decoupling with the C12�1
2 pulse sequence as a function of the pulse

length sp and the RF-field strength x1 measured at B0 ¼ 9:4 T. The

theoretical optimum at x1=ð2pÞ ¼ 132 kHz and sp ¼ 7:58 ls for a

spinning frequency of xr=ð2pÞ ¼ 22 kHz is marked by a �*�. The plot

shows that the synchronization condition x1 ¼ 6xr is relatively weak

and deviations up to 10% give only a small decrease in line height as

long as the pulse length is adjusted to a 2p rotation. Contour levels are

drawn at 50, 60, 70, 80, and 90% of the maximum peak intensity.

Fig. 32. Line height of the CH2 group in sodium propionate under decoupling with the C12�1
2 pulse sequence as a function of the phase increment D/

between to consecutive 2p pulses. The spinning frequency was xr=ð2pÞ ¼ 22 kHz, the RF-field strength x1=ð2pÞ ¼ 132 kHz, and the pulse length

sp ¼ 7:58ls The best decoupling is found D/ ¼ 25� which is smaller than the theoretical value of 30�.
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pN
np

xþm
k þ x�m

k

p2 � m2

� �
sin

npp
N

� �
2SzIkz: ð44Þ

The precise form of the coefficients depends on the exact

recoupling condition. The position of the recoupling

conditions is, to zeroth-order, independent of the RF-

field strength.

The occurrence of the recoupling conditions at mul-

tiples of a quarter of the rotor period can also be un-

derstood by regarding the XiX sequence as an example
of a so-called CNm

n sequence [46,70,71]. For this we

identify a C element with the basic repeat unit of the

XiX sequence, i.e., two phase-inverted pulses of length

sp each. At the positions of the minima (sp ¼ nsr=4), the

XiX sequence can then be identified with a sequence of

the type C20
n. For these sequences, symmetry consider-

ations predict that heteronuclear dipolar interactions

will be reintroduced by interference of the pulse se-
quence with the MAS rotation.

Numerical simulations of the S-spin intensity in an

isolated two-spin system (dSI=ð2pÞ ¼ 46, dI=ð2pÞ ¼ 1:5,

mr ¼ 30, and m1 ¼ 147 kHz) as a function of the pulse

length, sp, (Fig. 33) confirm the theoretical calculations.

However, they also show the limitations of lower-order

average Hamiltonian calculations. The resonance con-

ditions in the numerical simulations are quite broad, and
there are many additional weaker resonances that are

not predicted by the zeroth-order Hamiltonian of Eq.

(43). These observations reflect the fact that the zeroth-

order average Hamiltonian calculation is not sufficient

for a realistic description of the spin system, especially if

we have to average over several rotor cycles. Calculating

higher-order average Hamiltonians analytically for a

general ratio x1 ¼ pxr for XiX decoupling is very time
consuming.

5.4.2. Experimental data and discussion

The dependence of the experimental peak height on the

pulse length in XiX decoupling is shown in Fig. 34a–c for

two different RF-field amplitudes, m1, and two MAS fre-

quencies, mr, in a sample of [2-13C]alanine. The peak

height of 1 is calibrated with respect to experimentally
optimized TPPM decoupling at the same spinning fre-

quency andRF-field strength. The agreement between the

experimental data at 30 kHz MAS and 150 kHz RF-field

strength (Fig. 34a) with the numerical simulations in an

isolated two-spin system (Fig. 33) is quite good. The po-

sition of the main minima agree very well, and the minima

at an odd integer multiple of half a rotor cycle are con-

siderably broader than the ones at integer multiples of a
rotor cycle, which in turn are broader than those at odd

integer multiples of a quarter rotor cycle. At lower RF-

field amplitudes there are additional minima that are not

predicted by the simulations. They are most likely due to

multiple-spin effects. These weak ‘‘resonances’’ are found

whenever the pulse length approximately matches certain

multiples of 1/24th of the rotor period. In the experi-

mental data of Fig. 34 we find such minima for, sp ¼
ð3n� 1Þsr=3, sp ¼ ð6n� 1Þsr=6, sp ¼ ð8n� 1Þsr=8, and

sp ¼ ð8n� 3Þsr=8, where n is an integer.

Some of these additional ‘‘resonances’’ get more

pronounced at lower RF-field amplitudes, which can be

seen by comparing the measurements at 30 kHz MAS

and 150 kHz field strength (Fig. 34a) with the ones at

30 kHz MAS and 110 kHz field strength (Fig. 34b). It is

interesting to note that for the lower MAS frequency of
20 kHz and an RF-field strength of 110 kHz (Fig. 34c),

these additional resonances are again smaller and about

Fig. 33. Dependence of the peak height on sp=sr simulated for an

isolated two-spin system. The main recoupling conditions are at the

predicted locations where the pulse length is a multiple of a quarter of

the rotor period (figure adapted from [47]).

Fig. 34. Experimental peak height under XiX decoupling as a function

of the pulse length for two different spinning frequencies and two

different RF-field strengths. The peak height of 1 is calibrated with

respect to experimentally optimized TPPM decoupling at the same

spinning frequency and RF-field strength (figure adapted from [47]).
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the same size as for the measurements in Fig. 34a. With
increasing ratio of sp=sr, the ‘‘resonances’’ become

weaker, but the peak height at the local performance

maxima between the ‘‘resonances’’ decreases. Ulti-

mately, the performance of the XiX sequence ap-

proaches, of course, that of cw decoupling. This is

illustrated in Fig. 35, which shows the same measure-

ment as Fig. 34a extended to pulse lengths of up to 150

rotor periods.
In XiX decoupling good performance is achieved

whenever the pulse length is longer than approximately

one rotor period and unwanted resonance conditions, as

discussed earlier, are avoided. It can be seen from Fig.

34, where the peak height was normalized for experi-

mentally optimized TPPM decoupling (dashed lines),

that for a broad range of pulse lengths sp, the peak

height under XiX decoupling is up to 20% higher than
the optimized TPPM value. Even though there is a large

number of undesired minima with bad decoupling per-

formance, their positions in units of the rotor period, sr,

is largely independent of the RF-field amplitude and

the MAS frequency. Therefore, values where a good

decoupling performance is achievable can easily be

predicted.

The XiX decoupling sequence is simple to set up and
adjust since it depends only on a single parameter, i.e.,

the pulse length, sp. As a good starting value, the pulse

length can be adjusted to sp ¼ 2:85sr and then opti-

mized experimentally in a relatively narrow range

(�0:1sr). As the performance depends primarily only

on the timing of the sequence relative to the sample

rotation, transmitter instability, probe detuning or RF-

field inhomogeneity do not critically affect the perfor-
mance of the sequence.

5.5. Comparison between TPPM and XiX decoupling

A more detailed comparison between the decoupling

qualities of TPPM and XiX for different samples and

under different experimental conditions is given in Fig.

36. Experimental spectra are shown for a CH group

(Fig. 36a), using [2-13C]alanine as a model substance,

and for a CH2 group (Fig. 36b), using [2-13C]glycine.

The parameters of both TPPM and XiX decoupling
were optimized experimentally for the two samples, the

two MAS frequencies, and the three RF-field ampli-

tudes. For each pair of spectra recorded with the two

decoupling sequences, it was carefully checked that the

integrals of the resonance lines were identical within

experimental uncertainty.

For the CH group (Fig. 36a), the height of the reso-

nance line under optimized XiX decoupling is increased
over the optimum height found for TPPM. As men-

tioned already, the linewidths (FWHH) are very similar

for both sequences, and the gain is primarily obtained

by a sharpening of the broad �foot� in the TPPM spectra.

The largest improvement of ca. 29% in peak height is

achieved at the highest RF-field amplitude of 150 kHz

and at an MAS spinning frequency of 30 kHz. The ad-

vantages of XiX over TPPM decoupling decrease with
decreasing RF-field strength and decreasing MAS fre-

quency. At a relatively low spinning frequency of

10 kHz, XiX decoupling only outperforms TPPM de-

coupling at an RF-field strength of 150 kHz (data not

shown) [47].

The general trends observed for the CH group be-

come more pronounced for the CH2 group of glycine, as

shown in Fig. 36b. Again, both TPPM and XiX were
optimized for each spinning frequency and RF-field

amplitude. While under high MAS frequencies and high

RF-fields strength (e.g., mr ¼ 30 kHz and m1 ¼ 150 kHz)

gains in peak height are achieved by using XiX decou-

pling, TPPM decoupling offers advantages at lower RF-

field strengths and slower MAS rotation.

Fig. 37 shows the dependence of XiX (Fig. 37a) and

TPPM (Fig. 37b) decoupling on the RF-field amplitude
for one particular set of parameters. Only the RF-field

strength was changed while all other parameters were

kept fixed. This corresponds to the situation that one

encounters when RF-field inhomogeneities are present

in a sample. These spectra were obtained from mea-

surements on the CH group of labeled [2-13C]alanine

packed in a rotor in which the sample volume was re-

stricted to the central 1.5 mm along the rotor axis. The
MAS frequency in all measurements was set to 30 kHz.

The performance of TPPM decoupling had been opti-

mized at a nominal RF-field amplitude of m1 ¼ 130 kHz,

yielding parameters sp ¼ 3:7ls and u ¼ 35�. The per-

formance of TPPM decoupling degrades significantly at

lower and a higher RF-field strength. Optimization of

the XiX sequence at m1 ¼ 130 kHz yielded an optimum

Fig. 35. Experimental peak height under XiX decoupling as a function

of the pulse length sp. For large values of sp the peak height ap-

proaches the one achieved by cw decoupling (figure adapted from [47]).
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pulse length of mp ¼ 93:7ls ¼ 2:81sr. The overall de-
pendence on the RF-field amplitude is much weaker

than for TPPM decoupling.

As mentioned above, for obtaining optimum decou-

pling using TPPM it is mandatory to optimize both the

pulse length and the phase difference of the sequence.

Predictions for the optimum values are difficult to make

and, especially at higher MAS frequencies, TPPM be-

comes very sensitive to the precise setting of the pa-
rameters as can be seen from Figs. 29 and 30. The XiX

sequence, on the other hand, only has a single parame-

ter, and based on the MAS frequency, one can predict

the locations of the performance maxima quite well. As

a rule of thumb, good starting values for the pulse length

when using XiX decoupling are sp ¼ 1:85sr and

sp ¼ 2:85sr. From these starting values a local optimi-

zation of the pulse length should be sufficient for ob-
taining a close-to-optimum performance.

Gains in peak height of up to 29% over TPPM can be

achieved by using the XiX decoupling sequence. The

gain in peak height is, in the examples shown here,

mainly due to a sharpening of the broad ‘‘foot’’ that is

observed when using TPPM or cw decoupling. In ad-

dition to a gain in resolution, application of the new
sequence can lead to significant gains in sensitivity.

When applied to typical organic or biological solids, the

XiX sequence is best suited for high MAS frequencies

(above ca. 20 kHz) and high RF fields (above ca.

100 kHz), even though gains over previously developed

decoupling sequences have been observed in certain

cases already at an MAS frequency of 10 kHz.

6. Conclusions and outlook

The understanding of the processes which determine

the residual linewidth under high-power cw decoupling

has improved significantly over the past 10 years. It is

now known that the contribution from a cross-term

between the proton chemical-shielding tensor and the
heteronuclear dipolar-coupling tensor dominates the

residual linewidth. These residual coupling terms are

then partially averaged out by the proton spin-diffusion

process, which leads to a exchange-type process between

Fig. 37. Dependence of the Ca resonance of [2-13C]alanine (CH group)

on the RF-field strength for (a) XiX and (b) TPPM decoupling. An

amplitude of m1 ¼ 130 kHz corresponds to 1.00 and 0 dB attenuation.

TPPM decoupling shows a much stronger dependence on the RF-field

strength than XiX decoupling (figure adapted from [47]).

Fig. 36. Line shape of the Ca resonances of (a) [2-13C]alanine and (b)

[2-13C]glycine for TPPM and XiX decoupling at two different MAS

frequencies and at three different RF-field amplitudes. For each

spectrum, the parameters of the two decoupling sequences were ad-

justed to give maximum peak height (figure adapted from [47]).

M. Ernst / Journal of Magnetic Resonance 162 (2003) 1–34 29



the two transitions of the S-spins. Depending on the rate
constant of the proton spin-diffusion process, this can

lead to a significant narrowing of the line compared to

an isolated two-spin situation. This process has some-

times been called ‘‘self decoupling.’’ A simple analytical

model using an isotropic spin-diffusion type superoper-

ator allows the efficient and realistic description and

simulation of cw decoupling in strongly coupled spin

systems. The proton spin-diffusion rate constant can be
measured experimentally, allowing direct comparison of

experimental results with numerical simulations.

With increasing spinning frequencies, a new method

of decoupling using low-power RF-field irradiation be-

comes feasible. Here, the RF-field strength has to be

significantly lower than the MAS frequency while at the

same time be large compared to residual coupling terms.

This allows efficient decoupling at fast MAS frequencies
without the need for high RF-fields that can lead

to unwanted heating of the sample. The same terms

dominate the residual linewidth in both low-power and

high-power cw decoupling. It seems, therefore, not

unreasonable to expect that further improvements in

low-power decoupling can be achieved by using multi-

ple-pulse sequences.

The best decoupling results are currently still
achieved by high-power decoupling using multiple-pulse

sequences. The progress achieved in heteronuclear spin

decoupling under MAS can be seen quite well from Fig.

38. It shows the Ca resonance of [2-13C]alanine under cw

(Fig. 38a), optimized TPPM (Fig. 38b), and optimized

XiX (Fig. 38c) decoupling at the same RF-field strength

of 150 kHz and at the same MAS frequency of 30 kHz.

Both TPPM and XiX decoupling show obvious im-
provements in linewidth and line height compared to cw

decoupling. The peak height for XiX decoupling is in-

creased by an additional 29% over TPPM, while the

linewidth (FWHH) is only slightly reduced, namely

from 33 (TPPM) to 31 Hz (XiX). The reason for this

apparent contradiction is that the broad �foot� at the

base of the TPPM-decoupled spectrum is reduced under

XiX decoupling and now contributes to the central,
narrow part of the line [47]. Such an increase in peak

height by 29% is equivalent to a decrease of the mea-

surement time by 40% in order to obtain the same sig-

nal-to-noise ratio.

The achievable linewidth in a sample is, of course, not

only determined by the quality of the decoupling but

also by the structural homogeneity of the sample. This

fact is illustrated in Fig. 39 which shows three 13C and
15N spectra recorded on a sample of antamanide under

different sample-preparation techniques [68]. The spec-

tra of the lyophilized sample (Fig. 39a) show very broad

lines and improving the decoupling quality will have no

visible influence on the one-dimensional spectra. The

spectra of the slowly crystallized sample (Fig. 39c) show

narrow and well-resolved lines and improvements in the

decoupling quality might reduce the linewidth even
further. This example clearly illustrates that heteronu-

clear decoupling is only one of several aspect which are

important for obtaining well-resolved spectra.

Fig. 38. Line shape of the Ca resonance of alanine under different

decoupling schemes at an RF-field amplitude of m1 ¼ 150kHz and an

MAS frequency of 30 kHz. (a) cw decoupling; (b) optimized TPPM

decoupling (sp ¼ 3:1ls and u ¼ 27�); (c) optimized XiX decoupling

(sp ¼ 94:9ls) (figure adapted from [47]).

Fig. 39. Selection of 13C and 15N MAS spectra of antamanide to il-

lustrate the influence of sample preparation on the achievable line-

width. (a) Lyophilized powder. (b, c) Micro-crystalline powders

obtained by evaporation of the solvent from a solution of antamanide

in a 7:3 methanol/water mixture. The sample leading to spectra (b) was

obtained by fast evaporation of the solvent at room temperature in the

presence of dry silica gel as a drying agent. The sample leading to

spectra (c) was obtained by slow evaporation during several days in a

controlled humidity of 76% (figure adapted from [68]).
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However, even for samples with a large heteroge-
neous broadening like the ones shown in Fig. 39a, re-

ducing the homogeneous linewidth can be important for

certain experiments. In the solid-state implementation of

the INADEQUATE-CR experiment [72] only the ho-

mogeneous part of the linewidth determines the sensi-

tivity of the experiments, while the heterogeneous part

of the linewidth is not important. Therefore, in this ex-

periment it is important to use the best possible decou-
pling even in the presence of heterogeneous broadening

due to structural inhomogeneities in the sample. In the

context of two-dimensional correlation spectroscopy the

distinction between the heterogeneous and the homo-

geneous linewidth is also important since they will lead

to differences in the line shape.

It is not clear whether the linewidth achievable under

XiX decoupling is still dominated by residual coupling
terms or by the isotropic chemical-shift distribution of

the samples. The first contribution to the linewidth

could be reduced by further improvements in the de-

coupling sequences, while the latter would not be in-

fluenced. Most likely both contributions to the linewidth

are still present and their relative contributions are

sample-dependent.

Acknowledgments

I thank Prof. Alexander Pines, University of Cali-

fornia at Berkeley, who started my interest in hetero-

nuclear spin decoupling by asking me to work on

second-order effects in heteronuclear spin systems.

During my time in Berkeley I worked closely with
Dr. Andrew Kolbert and Dr. Seth Bush on trying to

understand how cw decoupling works under MAS.

Most of the work described in this ‘‘Habilitationssch-

rift’’ was carried out in the group of Prof. Beat H. Meier

first at the University of Nijmegen and now at the ETH

Z€uurich. I would like to thank him for the friendship,

freedom, independence, support, and many stimulating

discussions and suggestions he provided during this
time. During my time in Nijmegen and Z€uurich, my work

on decoupling profited from a fruitful collaboration

with Aswin Verhoeven, Prof. Helen Geen (University of

Nottingham, U.K.), Herbert Zimmermann (MPI f€uur

medizinische Forschung, Heidelberg), Dr. Ago Samoson

(National Institute of Chemical Physics and Biophysics,

Estonia), Dr. Edme Hardy, and Dr. Andreas Detken

who were all involved in the decoupling work at differ-
ent stages and in different ways. I would also like to

thank all the group members of the research groups in

Berkeley, Nijmegen, and Z€uurich who were always open

for discussions and questions while working on different

projects from mine. The stimulating and very open at-

mosphere during this whole time was an important

factor for my decision to stay in solid-state NMR and

academia. A special thanks goes to Dr. Susan M. De
Paul for carefully reading the manuscript and correcting

the ‘‘German’’ English into proper English. Of course,

all remaining errors are mine.

Appendix A

The explicit expressions for all the Hamiltonians

under magic-angle spinning used in Eq. (1) are given

here. They can also found in the literature [17–19] but

the notation might be different. The index k for the I-
spins was replaced by an index I in all equations where

only a heteronuclear two-spin system was considered.

Isotropic chemical shifts of spins S and I:

HCS
S ¼ xiso

S Sz; ðA:1Þ

HCS
I ¼

X
k

xiso
k Ikz; ðA:2Þ

where xiso
S and xiso

k are the isotropic chemical shifts of

spins S and Ik, respectively.

Homonuclear isotropic J-coupling:

HJ
II ¼

X
k<‘

pJk‘2Ik
!

I‘
!
; ðA:3Þ

where Jk‘ is the isotropic J-coupling constant between

spins Ik and I‘.
Heteronuclear isotropic J-coupling:

HJ
SI ¼

X
k

pJSkSzIkz; ðA:4Þ

where JSk is the isotropic J-coupling constant between

spins S and Ik.

Anisotropic chemical-shielding tensors of spins S and I:

HCSA
S ðtÞ ¼ xSðtÞSz ¼

X2

m¼�2
m6¼0

xþm
S e�ixrtSz; ðA:5Þ

HCSA
I ðtÞ ¼

X
k

xkðtÞIkz ¼
X
k

X2

m¼�2
m6¼0

xþm
k e�ixrtIkz; ðA:6Þ

where xSt and xkðtÞ are the time-dependent chemical-

shielding tensors of spins S and Ik, respectively. The

constants xm
S and xm

k are the corresponding Fourier

coefficients defined below.
Homonuclear dipolar-coupling tensor of spins I:

Hdip
II ðtÞ ¼

X
k<‘

xk‘ðtÞ½2IkzI‘z � ðIkxI‘x þ IkyI‘yÞ�

¼
X
k<‘

X2

m¼�2

m6¼0

xþm
k‘ e�ixrt½2IkzI‘z � ðIkxI‘x þ IkyI‘yÞ�;

ðA:7Þ
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where xk‘ðtÞ are the time-dependent, dipolar-coupling
tensors between spins Ik and I‘ with the Fourier coeffi-

cients xm
k‘.

Heteronuclear dipolar-coupling tensor between spins S

and I:

Hdip
SI ðtÞ ¼

X
k

xSkðtÞ2SzIkz

¼
X
k

X2

m¼�2
m6¼0

xþm
Sk e�imxrt2SzIkz; ðA:8Þ

where xSkðtÞ are the time-dependent dipolar-coupling

tensors between spins S and Ik with the Fourier coeffi-

cients xm
Sk.

RF irradiation on the spins:

Hrf
I ðtÞ ¼ x1ðtÞ

X
k

Ikx; ðA:9Þ

where x1ðtÞ is the (possibly) time-dependent RF-field

amplitude. This time dependence is not due to the MAS
rotation but due to the RF-irradiation scheme.

The Fourier coefficients of Eqs. (A.5) and (A.6) are

defined as

xm
S ¼ 2ffiffiffi

6
p d2

m;0ðhrÞe�imcS

X2

n¼�2

d2
n;mðbSÞe�inaSqðSÞ

2;n ; ðA:10Þ

xm
k ¼ 2ffiffiffi

6
p d2

m;0ðhmÞe�imck
X2

n¼�2

d2
n;mðbkÞe�inakqðkÞ

2;n; ðA:11Þ

where d2
m;nðuÞ is the reduced Wigner matrix element; hr is

the rotation angle; a, b, and c are the three Euler angles

which describe the orientation of the chemical-shielding

tensor in the rotor-fixed frame; and q2;n are the elements

of the chemical-shielding tensor in spherical-tensor no-

tation. They are defined as:

q2;0 ¼
ffiffiffi
3

2

r
dCSA;

q2;�1 ¼ 0;

q2;�2 ¼ � 1

2
dCSAgCSA:

ðA:12Þ

Here, the anisotropy of the chemical-shielding tensor,

dCSA, is defined in angular frequency units and gCSA is

the asymmetry of the chemical-shielding tensor.
The Fourier coefficients of the dipolar-coupling ten-

sors of Eqs. (A.7) and (A.8) are defined as:

xm
k‘ ¼

1ffiffiffi
6

p d2
m;0ðhrÞe�imck‘d2

0;mðbk‘Þq
ðk‘Þ
2;0

¼ 1

2
ffiffiffi
3

p
jmj

d2
0;mðbk‘Þ

!!! !!!e�imck‘ddip
k‘

ðfor hr ¼ hm � 54:74�Þ; ðA:13Þ

xm
Sk ¼

1ffiffiffi
6

p d2
m;0ðhrÞe�imcSk d2

0;mðbSkÞq
ðSkÞ
2;0

¼ 1

2
ffiffiffi
3

p
jmj

d2
0;mðbSkÞ

!!! !!!e�imcSkddip
Sk

ðfor hr ¼ hm � 54:74�Þ; ðA:14Þ

where d2
m;nðuÞ is the reduced Wigner matrix element; and

the angles b and c are the two Euler angles describing the

orientation of the dipolar-coupling tensor in the rotor-

fixed frame. The spherical-tensor elements are given by

qk‘
2;0 ¼

ffiffiffi
3

2

r
ddip
k‘ ðA:15Þ

and for m 6¼ 0

qk‘
2;m ¼ 0: ðA:16Þ

Here,

ddip
k‘ ¼ �2

l0

4p
ckc‘�h
r3
k‘

ðA:17Þ

is the anisotropy of the dipolar-coupling tensor in units

of angular frequency. The second line of Eqs. (A.13) and

(A.14) is only valid for hr ¼ hm � 54:74� (magic angle).

For the heteronuclear dipolar-coupling tensor, analo-

gous expressions hold true.

Appendix B

The six coefficients in Eqs. (31)–(34) can be calculated

from the Fourier coefficients of the various time-de-

pendent Hamiltonians given in Eqs. (A.10)–(A.14). All

calculations were carried out using the Mathematica

program by Wolfram Research.

The coefficient for the cross-term between the het-
eronuclear coupling (anisotropic dipolar coupling plus

isotropic J-coupling) and the homonuclear coupling

(anisotropic dipolar coupling plus isotropic J-coupling)

is given by:

�xxSk‘ ¼
X2

m¼�2
m6¼0

i

2m
xþm

k‘

�"
� 2pJk‘

�
x�m

Sk

�
� x�m

S‘

�

� ðpJSk � pJS‘Þxþm
k‘

#
: ðB:1Þ

The coefficient for the cross-term between the homo-

nuclear coupling (anisotropic dipolar coupling plus

isotropic J-coupling) and the chemical shift of spin I

(anisotropic chemical-shielding tensor plus isotropic

chemical shift) is given by:

�xxk‘ ¼
X2

m¼�2
m6¼0

i

2m
xþm

k‘

�"
� 2pJk‘

�
x�m

k

�
� x�m

‘

�

� ðxiso
k � xiso

‘ Þxþm
k‘

#
: ðB:2Þ
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The coefficient for the first-order term of the homonu-
clear coupling (anisotropic dipolar coupling plus iso-

tropic J-coupling) with itself is given by

�xxnk‘ ¼
X2

m¼�2

m6¼0

i

4m
x�m

nk xþm
n‘

"
þ 2xþm

n‘ x�m
k‘

þ 2x�m
nk xþm

k‘ þ x�m
nk ð2pJn‘ þ 4pJk‘Þ

þ xþm
n‘ ð2pJnk þ 4pJk‘Þ

þ x�m
k‘ ð2pJnk þ 4pJn‘Þ

#
: ðB:3Þ

The coefficient for the cross-terms between the RF field

and the anisotropic chemical-shielding tensor is given by

�xxrf
k ¼

X2

m¼�2
m6¼0

i

m
xþm

k : ðB:4Þ

The coefficients for the cross-term between the RF field
and the anisotropic heteronuclear dipolar-coupling

tensor is given by

�xxrf
Sk ¼

X2

m¼�2
m6¼0

i

m
xþm

Sk : ðB:5Þ

The coefficients for the cross-term between the RF field

and the anisotropic homonuclear dipolar-coupling ten-

sor is given by

�xxrf
k‘ ¼

X2

m¼�2
m 6¼0

3i

2m
xþm

k‘ : ðB:6Þ

The coefficient of (36) is given by

�xx0
nk‘ ¼

X2

m¼�2

m6¼0

i

4m

� 4xþm
nk x�m

n‘

"
þ xþm

n‘ x�m
k‘ � xþm

nk x�m
k‘

#
: ðB:7Þ

For simplicity, only the homonuclear dipolar coupling

has been considered in the above expression while the

homonuclear J-coupling has been omitted.
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